
An Empirical Study of SDK Credential Misuse in
iOS Apps

Haohuang Wen
School of Software Engineering

South China University of Technology
Guangzhou, China

onehouwong@gmail.com

Juanru Li
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
Shanghai, China

jarod@sjtu.edu.cn

Yuanyuan Zhang, Dawu Gu
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
Shanghai, China

{yyjess, dwgu}@sjtu.edu.cn

Abstract—During the development of web-based mobile apps,
third-party SDKs (Software Development Kit) are frequently
used to facilitate the integration of certain functionality such
as push notification and mobile payment. Unfortunately, security
issues are often considered as a second-tier problem and app
developers are prone to implement apps with SDK misuses.
Among those typical SDK misuses, the misuse of credentials is
the one that introduces serious security threats. A credential
is a set of unique information (e.g., APP ID, App Token, etc)
allocated to a specific developer to help app authenticate the
identity. However, if not properly used, the credential can be
easily obtained by attackers and leads to not only the leak of
confidential information of mobile developers but also direct
threats to the privacy of end users.

To investigate the SDK credential misuse issue on iOS plat-
form, in this paper we conduct an empirical study against 100
popular iOS apps using two popular mobile SDKs (each SDK
are widely used by at least 40 million users). We implemented
iCredFinder , an automated analysis tool to search credential
misuses in those apps and our experiment demonstrates 68 apps
contain at least one misuse case. Our study demonstrates the
severity of credential misuse on iOS platform: even for those
well-developed SDKs and apps, credentials are not well protected
and can be easily discovered. We expect that our study could help
developers fix those flaws and promote better implementations.

Index Terms—iOS apps, Third-party SDKs, Binary code anal-
ysis, Credential exposure

I. INTRODUCTION

Mobile SDKs are widely adopted by app developers so

that they can easily build a variety of mobile apps for modern

Android and iOS devices (e.g., smart phones and tablets).

Among various kinds of features provided by different SDKs,

one typical feature is to help apps interact with remote APIs

related to back end services and information on servers.

Since one same service is often provided to different apps,

a remote API needs to authenticate the identity of guest apps.

The solution for most mobile SDKs is to use credentials to

distinguish different apps while keeping the same copy of the

code. A credential is often a set of unique information (e.g.,

APP ID, App Token, etc) allocated to a specific developer

when she registers herself to the web service provider. When

the app uses certain web services, it is required to provide

such credentials to express its identity. Otherwise, the request

is blocked.

Since credentials are often the only authentication infor-

mation for many web services, mobile developers need to

properly manage them and should be extra vigilant about

credential security. Unfortunately, the use of mobile SDKs

often weakens this assumption. For one thing, SDK providers

often publish vague instructions on how to use credentials,

leading to mistakenly embedded and protected credentials. For

another, even if a correct guide of credential management

is published, it involves many aspects of protection and is

often very complex. Developers still face various challenges

in implementing a secure protection scheme. As a result, many

flaws related to SDK credentials have been discovered in

mobile apps.

Previous researches [1] proposed to uncover mobile SDK

credential issues mainly focus on Android ecosystem because

Android platform is open-source and the binary code analysis

for bytecode of Android app is well-developed. The code of

Android apps are mostly written in Java and then compiled

into Dalvik bytecode. By leveraging typical program analysis

techniques such as data flow analysis and program slicing,

credentials used in programs can be located at the level of

bytecode. Unfortunately, when the analysis targets turn into

iOS apps, existing approaches are no longer available. First,

iOS apps are compiled into native code executable to guarantee

performance. Compared with bytecode binary executables of

Android apps, native code executables on iOS are much more

difficult to be decompiled and analyzed. The lack of relevant

analysis tools and techniques hinders the automation of iOS

app analysis and code audit is often conducted manually.

Second, iOS apps are mainly developed in Objective-C with

a complicated message dispatching mechanism. This makes it

difficult to conduct an accurate control flow analysis for the

program. Moreover, the executable of iOS app is often very

large because it statically links all used third-party libraries.

As a result, a fine-grained binary code analysis against iOS

app is often time-consuming and error-prone. Finally, even

for the same SDK, a provider often releases two versions for

Android and iOS platform, respectively. The usage of such

SDK on different platforms varies significantly and thus the

experience of how to analyze credential misuse on Android

cannot directly port to iOS platform. Due to those challenges,

to the best of our knowledge, no systematic research on

258

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00040

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

credential misuse of iOS apps has been conducted.

In this paper, we seek to perform an empirical study of how

iOS app developers misuse SDK credentials. We aim to answer

two problems: 1) is it possible to automatically analyze SDK

credential misuses in iOS apps; and 2) how to evaluate the

found credentials in an app. To answer the first problem, we

propose an automatic credential misuse detection solution for

iOS apps and have implemented iCredFinder , a corresponding

analysis system. To answer the second problem, we combine a

static program analysis and a dynamic data validation to check

the risks related to all discovered credentials. We not only stat-

ically detect credential in apps but also validate its property:

is it a valid token or is it just an expired one. By leveraging

the automated analysis of iCredFinder , we check a dataset

of more than 20,000 iOS apps and choose 100 widely used

apps integrated with two most frequently used mobile SDKs

in Asia. These apps are in good maintenance state and have

accumulated millions of users, which can well represent the

coding practice of developers today. Among them, iCredFinder
found 68 apps contain at least one credential misuse case.

Individually, 62 and 29 apps have embedded valid credentials,

respectively for the two SDKs. Considering that our studied

SDKs are such popular ones (with over 40 million users [2]),

the analysis results reveal that iOS apps are not as secure as

previously imagined. Interestingly, our credential validation

found 34 cases of invalid credentials besides the common

credential exposure cases. Those apps work normally after

we removed contained credentials, which indicates that the

exposed credentials are mistakenly integrated by developers.

Although those credentials are no longer used by the current

version of apps, they are still kept in program code. We also

consider this as a credential misuse because it may reveal some

secret information of the past development.

The contributions of this paper are as follows:

• We conduct an empirical study on SDK credential misuse

problem against iOS apps. To address the issue of iOS app

binary code analysis, we present an automatic detection

solution that is able to find SDK credential misuse in iOS

apps. We also describe the prototype implementation of

iCredFinder , our automated detection system.

• Focusing on two frequently used mobile SDKs, we

checked 100 widely used apps with the help of

iCredFinder . The results show the feasibility of our ap-

proach: we found 68 apps contains at least one credential

misuse case.

II. PROBLEM AND SOLUTION

A. SDK Credential Misuse in iOS Apps

1) Problems: Third-party SDKs are widely used to facili-

tate the development of iOS apps. Although these SDKs are

designed as general components and are used by different apps

to fulfill similar functions, the corresponding web services

often require access control and authentication. Therefore, the

web service often needs extra secret information (we define

this as a SDK credential) to help authenticate the identity

of the host app. A typical example of SDK credential is

demonstrated in Figure 1. To authenticate itself to the web

server, an app needs to provide SDK credential (Line 22 a

constant string) and other necessary information (Line 20-27,

including client id, redirect URL, etc).

Obviously, SDK credentials should be properly managed to

avoid leakage and illegal usage. Since the SDK credential is

used in a mobile device, which is generally considered as an

untrustful environment, the protection of such SDK credential

is essential for app developers. Unfortunately, developers tend

to adopt insecure practice when integrating the SDK creden-

tials. What’s worse, documents and specifications of many

SDK providers are likely to give vague examples of how the

SDK credential should be used, and developers following these

ambiguous instructions tend to misuse the SDK credential,

leading to severe security risks. For instance, they may directly

embed the credential information in the app. In the case in

Figure 1, the SDK credential is hard-coded as a parameter in

the construction of a dictionary and is then embedded into the

argument field of an HTTP request for authentication. Since

the credential is used without any protection, it can be directly

extracted by any attacker using reverse engineering.

2) Attacks: A misused SDK credential may lead to serious

security attacks including unauthorized use of web service,

illegal access to user information and app data, etc. With a

valid SDK credential of a specific mobile app, an attacker

can act as a qualified developer to access certain third-party

services. Take the credential exposure case in Figure 1 as an

example, if the attacker first obtains the SDK credential, he

can conduct a concrete attack demonstrated in Figure 2. In this

attack, the attacker utilizes the obtained credential to construct

an HTTP request. This request can be used to obtain an access

token, which can then be used as the certificate to use third-

party service (Step 1 and 2 in Figure 2). Therefore, the attacker

successfully disguises as a qualified developer and is able to

access any service provided for the SDK provider. With the

illegally acquired identity, the attacker then requests for user

information by invoking the related remote API. If he knows

the uid of a target user, the attacker could construct another

request to query private information of this user information

(As shown in Step 3 and 4 of Figure 2). With the help of

a leaked credential, confidential personal information of a

specified user can be illegally accessed easily.

B. Challenges

Although similar researches on SDK credential of Android

apps have been proposed, the study of such object against iOS

apps is significantly different and non-trivial. An effective and

accurate analysis faces the following three challenges:

• Challenge I: Reverse engineering of iOS apps. The

ecosystem of iOS is proprietary and every iOS app in

AppStore provides neither the source code nor the binary

code. To analyze an iOS app an analyst has to make

additional efforts to decrypt the binary executable. Note

that it is infeasible to obtain decrypted binary executable

259

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An Example of an Insecurely Embedded SDK Credentials

 HTTP POST /oauth2/accesstoken
{client_id=1023…&client_secret=f45e…&grant_type=...}

 {access_token=2.00gZY..., expire_in=...}

Attacker

Authentication
Server

tion

Web Server

 HTTP GET
/users/show.json?uid=…&access_token=2.00gZY...

 {id=…, name=…, gender=…, district=...}

Fig. 2: How can an attacker harvest user information with a valid SDK credential

of an app without a jailbroken iOS device. In addition,

binary code analysis of iOS app is much more difficult

than that of Android app. Android app analysis is sig-

nificantly facilitated by many well-developed bytecode

decompilation utilities (e.g., JEB). In comparison, less

binary code analysis tools are provided and the decom-

pilation of Objective-C binary code in iOS apps is far

from perfect, leading to the missing of much important

semantics such as function parameter types and variable

names.

• Challenge II: Identifying credentials in iOS apps: To

study the credential misuse problem, the first necessary

step is to identify the used credentials in the program code

of an app. However, the identification of such credentials

in an iOS app can learn little from the identification expe-

riences on Android platform. The use of credential in an

Android app and in an iOS app are significantly different

even if these apps are developed by the same company.

This is determined by different programming language

styles and therefore program analysis techniques available

for Android apps are not applicable when analyzing iOS

apps. Besides, the authentication processes of one SDK

on two platform are often not the same. Hence, new

identification techniques are expected to be proposed.

• Challenge III: Credential validation: An interesting

fact for many apps is that not all statically integrated

credentials in an app can be utilized. Some of them may

be expired beforehand and are left in the app by mistake.

An accurate analysis should validate each credential to

check whether a discovered credential is still a remaining

threat. However, this often requires a dynamic verification

and a solely static program analysis is not feasible to

achieve such a goal.

C. Solution Overview
All these obstacles mentioned above make the existing

analyzing techniques for SDK credential in Android apps fail

to work against that in iOS apps. To address, we propose an

automatic credential misuse detection solution for iOS apps

combining with a static program analysis and a dynamic data

validation. The solution adopts the following strategies:

• Script-based iOS binary code analysis To automate the

binary code analysis of iOS apps, our solution utilizes

260

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Workflow of iCredFinder

IDAPython scripts to implement many functions such

as automatically extracting and splitting function names,

acquiring a function’s address by name, etc. With the help

of those analysis scripts, our analysis could deal with

binary executables of commercial iOS apps with tens of

thousands of functions stably and efficiently.

• Heuristic-based credential identification: Since a fine-

grained program analysis against an iOS app is not only

very time-consuming and error-prone since many iOS

apps are very large (more than 100MB), our solution

adopts a heuristic-based credential string searching strat-

egy. This strategy speeds up the analysis and it also

proves the potential candidates can be captured. We then

supplement this identification with a dynamic validation

to prove that the identification result is accurate.

• Dynamic credential validation: We observed that many

web services released by SDK providers can be used

as side channels to check the validity of a potential

credential. Hence our solution can leverage these web

services as remote oracles and construct certain queries

to validate a credential candidate. Although such a remote

oracle not directly responses the result of validity, we can

deduce the needed information by observing its different

replies.

We design and implement iCredFinder , a credential misuse

analysis system to automate our analysis. The workflow of

iCredFinder is displayed in Figure 3. To better illustrate the

entire analysis process of iCredFinder , we make use of a sim-

ple case to present. Considering an iOS app that may contain

misused credentials. iCredFinder first takes the Mach-O exe-

cutable of this app as the initial input (the Mach-O executable

is automatically extracted on a jailbroken iOS device with our

developed shell script). Then, a locater of iCredFinder ana-

lyzes the assembly code and searches for credential candidates

from the string sets of the executable. At the same time, the

addresses of these candidates are also recorded. For instance, if

a string (e.g., b4adae3a2d91021ad33151f2ca707954)

matches the specific feature, it is chosen as a credential can-

didate and its corresponding address (e.g., 0x101781DE0) is

recorded. Next, the candidate is passed to a filter for further

checking. The filter extracts two features of the credential

from the decompiled code of the executable, including the

function name (e.g., -[AppDelegate registerShareSDK]) and

the invocation (e.g., SSDKSetupWeChatByAppId:appSecret).
An invocation is a statement where the credential is taken as

a parameter by a function call. To further filter the credentials

with the features, we match the two features with some

keywords. If at least one of them contains certain keywords

(e.g., SDK, secret), the candidate is chosen as a potential one.

Finally, those collected candidates are sent to the validator

of iCredFinder . The validator adopts a dynamic analysis

approach to validate them by leveraging some remote web

service APIs (e.g., Access Token authentication API). If the

remote API based dynamic query proves that the credential

is a valid one, iCredFinder will report a risky credential use

case.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. App Preprocessing

1) App collection: Before the binary code analysis, we have

collected a large number of candidate iOS apps to build our

sample set. The apps are selected from the top list of the

iOS app market as they are likely to integrate various third-

party SDKs and are frequently updated and maintained by the

developers. Apps cannot be directly used for analysis if they

are downloaded from the official Apple APP Store because

they have been encrypted. To address this issue, we have to

make use of the decryption tool like dumpdecrypted or

Clutch to decrypt the apps.

2) Extraction of Mach-O Executable: Analyzing iOS apps

with IDA will take a Mach-O executable as input. This

executable can be found in the .ipa package of the app. To

simplify the process, we implemented an automated tool for

the extraction of executables. The hierarchical structure of a

directory of an iOS app is displayed in Figure 4.

The .ipa file is essentially a compressed file containing

resources and code of the app. Take Baidu Wallet app as an

example, our target executable is BWA, which shares the same

name with its parent directory BWA.app. As a result, we can

easily write a program to automatically extract the Mach-O

executables from a large number of apps.

261

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

.ipa(App)

Payload
…
…
BWA.app

…
Info.plist
BWA

Fig. 4: The Hierarchical Structure of a Directory

B. Harvesting SDK Credentials

To find SDK credentials from a large number of iOS apps,

we conduct the following steps to fulfill the target. Initially,

our system takes the Mach-O executables from the app set as

input. Then, the locater of iCredFinder utilizes some features

to match the candidate secrets, and at the same time locates

their addresses in the assembly code. After that, the filter

of iCredFinder further selects the strings according to their

function name and invocation. Finally, the system validates

all the strings to find out the valid secrets. In the following

paragraphs, we will introduce the detailed steps.

1) Locating Credential Candidates: The analysis of SDK

credential starts from locating the credential candidates.

Through the disassembling and analysis process, we can get

the assembly code as well as the string set of the program. The

SDK credential of the third-party SDKs has distinct features,

it is simply a 32-character hex string. We can easily exclude

most of the useless strings utilizing this feature.

The next thing to do is locating the addresses of the strings.

In this step, the XrefsTo function in IDA Python is used to

check all the references of the given address. Specifically, most

of the strings we found in the string set are cstrings. To locate

the references of the string, the following steps are executed.

(i) Given one cstring and its address, XrefsTo is called to

locate its referenced address.

(ii) Through step (i) we can get the referenced cfstring
address of the original string. Then, XrefsTo is called

again to locate its referenced addresses in the assembly

code.

(iii) From the previous steps, we can get the addresses of the

assembly code where the string is embedded. We map

the given string with these addresses as output.

Note that in some cases a cstring is directly referenced by

the assembly code, so step (ii) is unnecessary. Through these

steps, we can select many candidate secrets and locate their

addresses in the assembly code.

2) Filtering Credential with Features: The collection of

secrets we obtain from the previous step is too large to be

validated because it still contains a large number of useless

strings. In this step, we will filter the secrets based on the

features. According to our observation, the function name

and invocation of the secrets often contain useful semantic

information. For example, secrets often appear at some “set”

and “get” functions, and are frequently called by the SDK ini-

tialize functions like “SSDKSetupWechatByAppId:appsecret”.

Therefore we take the function name and invocation as our

feature to filter the SDK secrets.

After the locating of credentials, we obtain a set of candi-

dates as well as their addresses. we then develop scripts based

on IDAPython and make use of the provided APIs to fulfill

specific functions, such as disassembling and decompilation.

The GetFunctionName and get pesudocode function provided

by IDAPython enable us to get the function name and the

pesudocode based on the given addresses. Note that in the

pesudocode, the invocation statement are often cut into several

lines and thus we need to recover it to be a complement

statement. The decompilation step is implemented by the Hex-

rays decompiler of IDA Pro. The detailed steps to obtain

features are displayed in Algorithm 1.

Algorithm 1 Feature Extraction

Input: secret, address

for each line in pseudocode do
targetLine ← line where secret appears;

end for
for line between targetLine and endLine do

if line contains “;” then
endIndex ← index of line

end if
end for
for line between targetLine and startLine do

if line contains “objc msgSend′′ then
startIndex ← index of line

else
if line contains “;” then
startIndex ← index of line - 1

end if
end if

end for
Output: functionName, invocation

We go through all the lines in the pesudocode to locate

the credential. The invocation of functions in Objective-C is

implemented through the delivery of messages, specifically

in the assembly code, when function objc msgSend is called.

This function takes a class, a selector and the function argu-

ments as parameters. As a result, our target focuses on the

objc msgSend functions where the credential is taken as a

parameter.

To extract the invocation of the credential, we starts from the

line of code where credential appears and search forward until

a semicolon is found, which indicates the stop of a statement

and use endIndex to mark the end of an invocation. Then,

we start again from the code line of the credential and search

backward until objc msgSend is detected to locate the start

262

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

point which is denoted by startIndex. Finally, we recover

the whole invocation and record it.

After we obtain the function name as well as the invocation,

we filter the credential based on keyword matching. If both of

the features do not match any keywords, the credential will be

abandoned. Otherwise, it is selected as a potential credential.

Our keywords are selected based on our observation, like

“secret”, “login”, etc. During the matching process, we convert

all the strings to lower cases.

It is worth mentioning that since some functions are ob-

fuscated or encrypted during the development, meaningful

information is lost and IDA can not correctly recover their

name. These functions are those with names starting with

“sub ”. However, our approach is resilient to this issue because

we use both of the features for judgment.

C. Credential Validation

The validation of credentials makes use of the official

authentication API which aims at getting the access token.

The authentication process is designed based on the OAuth2

protocol. Developers need to get that token through the HTTP

GET or POST method with some necessary parameters. Our

validation process is implemented by a light-weighted com-

mand line tool curl to simulate the HTTP requests.

During our experiments, we notice an important rule that the

arguments of the request are checked orderly. For example,

when the return message indicates the second argument is

invalid, it also means the first argument has passed the check

on server and thus is valid. Specifically, many web servers of

third-party SDKs check the parameters in the order of appid,

secret and then code or redirct URL. As long as a correct

appid is provided, we can send several authentication requests

to see which credential is valid. Fortunately, the appid often

have distinct features and can be easily found. For example,

the appid of WeChat SDK is a string starts with “wx” and has

a length of 18. From the previous step of locating credentials,

our system also extracts some strings that are likely to be

appids. During validation, we try them one by one until a

valid appid is found. Then we test each of the credentials to

find out the valid credentials.

In real cases, when an invalid credential is tested, the return

message from the server will indicate that the credential is

incorrect. On the contrary, the return message will show that

there is an error on redirect URL or code, meaning that the

credential has passed the validation on the server and is a valid

one.

IV. EVALUATION

In this section, we will present our evaluation of the analysis

of SDK credentials. We introduce our target SDKs and app

samples in IV-A, present the evaluation results on third-

party SDKs in IV-B, and finally discuss the effectiveness and

performance of iCredFinder in IV-C as well as the suggested

best practices in IV-D.

A. Analysis Targets
Prior to this study, we have built a dataset of 20,000 iOS

app executables. We conduct a search on those apps to find

the most frequently used SDKs. We extracted all classes

whose names contain keywords like “SDK”, “API”, and then

determine what SDKs are used. The result reveals that the

top two most frequently integrated SDKs are the WeChat and

Weibo SDKs that are adopted by about 80% of the apps, and

own over 40 million users. Other SDKs such as QQ SDK,

Jingdong SDK, and Alipay SDK are used only by less than

40% of the apps. As a result, our experiments focus on those

two most popular SDKs.
We analyzed 100 most downloaded apps with at least one

SDK integrated into our dataset. Overall, among the 100 app

samples, 94 of them have integrated WeChat SDK, and 78 of

them have integrated Weibo SDK. 72 of them have integrated

both of the SDKs.

B. Experimental Results
During our evaluations, we respectively conducted analysis

on apps that have integrated WeChat and Weibo SDK. The

overall results are presented in Figure 5. To sum up, we have

drawn the following conclusions based on our experiments,

and then we will respectively present results on each of the

SDKs in detail.

• Among the 100 app samples, a majority of them suffer

from the direct exposure or the residual credential issues

where some apps can still work normally when the cre-

dentials are removed. It is revealed that many developers

are unaware of carefully preserving the SDK credentials.

• The exposure of credentials is mainly caused by the

direct request for access token on the client side. As for

the residual problems, various reasons may lead to this

consequence, such as the consideration of compatibility

and the carelessness of the developers.

• The extracted credentials of Weibo SDK are less than

those of WeChat SDK. The major reason is that most of

the developers follow the official guide and implemented

the login function based on the SSO login module.

• The credentials discovered by iCredFinder are all in plain

text. They are directly used without any protection such

as encryption or encoding.

Note that the official guides of those two SDKs have empha-

sized the importance of credential protection and suggested,

and developers are expected to adopt secure practices to

preserve them [3], [4]. To better understand the root causes

of the frequently occurred misuses, in the following, we detail

the analysis for two SDKs, respectively.
1) WeChat SDK Credentials. We analyze the credentials

of WeChat SDK on 94 iOS apps. As shown in Figure 5a, we

extracted one or more valid credentials from 62 apps. Among

them, 52 (55%) apps directly expose the credentials in the

program, 10 (11%) apps suffer from the residual secret issue,

while only 32 (34%) apps securely preserve their credentials.

• Direct exposure. Among the 52 apps which directly

expose their credentials in plain text, iCredFinder extracts

263

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

Exposure
Residual
Secure

(a) WeChat SDK (b) Weibo SDK

Fig. 5: Evaluation Results of WeChat and Weibo Credentials

Fig. 6: Direct Exposure of Secret

the credentials and performs validation. Most of them

adopt the same insecure coding practice, which requests

for the access token directly on the client side through

the official OAuth2 APIs. With that access token, devel-

opers can implement functions like sending messages and

sharing information. According to our dynamic analysis

on the packages shown in Figure 6, a secret is directly

used as a parameter in the client’s request, and as a

result is likely to be exposed directly in the program.

Some other developers although do not invoke the official

API in the authentication process, still take credentials as

parameters in other network requests, which also leads to

the credentials exposure issue.

• Residual credential issue. There are 10 apps suffer from

the residual credential issue. Unlike the direct exposure

issue, these apps can still work normally even when the

credentials are removed. Through our observation, the

functions taking credentials as parameters are never used

or even have been removed. Nevertheless, most of the

credentials are extracted by iCredFinder and are proved to

be valid ones, while some others are expired. Compared

with the direct exposure problem, it is totally possible

for the developers to address this vulnerability during

the develop process. For one thing, during software

iteration, careless developers may forget to delete useless

credentials after modifying the login module. For another,

the developers may preserve different login modules in

the program for compatibility considerations.

• Secure practice. As for the remaining 32 apps free

from the vulnerabilities, the developers do not request for

264

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

access token directly on the client side through the official

OAuth2 API. Instead, them upload the authentication

code to their own servers to let them start the request, as

is shown in Figure 7. When the authentication process is

done, the servers send back the access token to the client

side for the access of third-party service. The sensitive

credentials are well-preserved on the cloud and attackers

are not able to get them through reserve engineering the

mobile apps. This is a secure practice advised by the

official guide.

2) Weibo SDK Credentials. We analyze the credentials

on 78 iOS apps integrated with Weibo SDK. We successfully

extracted one or more credentials from 29 apps, as depicted

in Figure 5b. Among these apps, 5 (6%) apps directly expose

their credentials, 24 (31%) of them suffer from the residual

credential issue, while the other 49 (63%) apps are free from

secret vulnerabilities.

• Direct exposure. Among our samples, only 5 apps di-

rectly expose the credentials in the program, accounting

for only 6% of the apps. The way of exposing credentials

is the same as that in WeChat SDK, i.e., developers

request for access token directly on the client side and

take the credential as a parameter.

The authentication process of Weibo SDK is similar

to WeChat SDK, as both of them adopt the OAuth2

protocol. However, the results of these two SDKs are sig-

nificantly different. The number of exposed credentials is

much less because a majority of developers adopt Single

Sign On (SSO) login module which is also provided by

the Weibo SDK. Our analysis result is shown in Figure 8.

Credentials are not needed in the SSO login process,

so these apps are free from the exposure of credentials.

According to the official guide of Weibo SDK, developers

are suggested to implement the login module based on

SSO. Therefore, thanks to this suggestion, the direct

exposure of credentials are eliminated in most of the apps.

• Residual credential issue. Although most of the de-

velopers have avoided the direct exposure vulnerability

of credentials, there are also 24 apps suffer from the

residual credential issue, which is the major cause of the

misuse of Weibo SDK secrets. A reasonable explanation

is that the OAuth2 authentication module is reserved for

compatibility consideration.

It is also worth mentioning that although there are 4

apps that did not implement the login function, we still

successfully extracted valid Weibo SDK credentials from

them. These outliers are not recorded in our result.

Through validation, the credentials and appids are proved

to be valid and belong to the apps themselves. This may

be as a result of requirement changes and the carelessness

of developers.

• Secure practice. Lastly, a majority of apps do not have

vulnerabilities on their credentials, accounting for 63%

of the total. The developers of these apps properly im-

plemented the login module based on SSO and carefully

follow the official guide. Some others although adopted

their own implementation of the authentication process,

did not directly embed the credentials in the program.

Therefore, these credentials cannot be extracted through

revese engineering.

C. Effectiveness and Performance

We implement iCredFinder mainly based on the state-

of-the-art disassembler IDA Pro and its script subsystem

IDAPython. iCredFinder reuses the disassembly output from

IDA Pro and utilizes IDAPython to manipulate those outputs.

It works stably on all 100 samples without facing any disas-

sembling and decompilation error. There are no false positives

in our evaluation results, since we tested all the credentials

through the official API and can make sure their validness.

False negatives may exist but it is hard to automatically find

out all these credentials. The validation process depends on

the correctly provided appids, while in some cases, developers

may purposely hide them and our system fails to extract

them out. Besides, some developers may adopt encryption or

encoding to protect appid and secret, which thus adds to our

false negatives.

The performance of our analysis is efficient: most of the

analysis tasks can be finished in less than 30 minutes. In

addition, the analyses of different apps can be fulfilled in

parallel. The most time-consuming part of our analysis is

code disassembling and decompilation, whose execution time

depends on the size of an app. While for the validation process,

only about tens of potential credentials are selected for final

validation in each app on average, so the execution time of

the validation process may take just a few seconds when the

network condition is fine and thus can be ignored.

D. Best Practices

From the perspective of developers, we also suggest some

secure practices that help protect SDK credentials from being

extracted through reverse engineering.

• Do not directly embed important credentials in the
client-side, preserve them on the cloud. When request-

ing for authentication, the mobile app should gain the

permission of users and upload the authentication code

to the cloud. The cloud server then requests for the access

token and return it to the client side.

• Delete useless secrets. Developers should always remove

any credentials from the program even if a credential is

expired.

• Use encryption and encoding to protect SDK creden-
tials. Credentials embedded in the client-side program

should be carefully preserved. The key for decryption can

be obtained from the cloud server or can be generated

from a complex algorithm. These can make it very hard

for the attackers to get SDK secrets through reverse

engineering.

• Clean up the memory after authentication. Some

residual secrets and access token may be still in the

265

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Secure Practice to Preserve Secret

Fig. 8: SSO Login of Weibo SDK

memory and thus are vulnerable to attackers in some

cases.

V. RELATED WORK

Security Analysis on iOS Platform. Though iOS is a

relatively mature and secure mobile OS, there are still plenty

of security concerns on it. Many research focused on the

security issues on iOS mobile apps and adopted static and

dynamic analysis to identify vulnerabilities in these apps. The

uncovered concerning problems include the leakage of privacy

and insecure developer practices. PiOS [5] and PSiOS [6] are

designed to detect the privacy leakage and the latter can also

help address the vulnerable against attacks. More recently,

researches have discovered that the privacy in iOS apps is

also vulnerable to effective OS-level side-channel attacks [7].

Besides the detection of privacy leakage, many efforts have

been made on the identification of insecure developer prac-

tices. For example, iCryptoTracer [8] is proposed to identify

the misuses of cryptography functions. CRIOS [9], a system

aiming at large-scale app analysis, can uncover the library

usages and network security problems.

In addition, there are also other security vulnerabilities on

iOS platform. Obfuscation in iOS apps is studied about their

motivations and pitfalls. The authors also propose several pos-

sible obfuscation approaches to hide the sensitive information

in iOS apps [10]. The sandbox mechanism is systematically

studied, as the researches put forward a novel approach to

analyze the sandbox profiles and also present ways to bypass it

to obtain system level information [11]. Deng et al. focused on

the vetting procedure. They discovered the security issues on

Apple’s apps vetting process and suggested a comprehensive

and secure vetting approach [12].

Vulnerabilities Identification on Mobile Apps. Mobile

apps on other platforms also have security concerns. Besides

iOS, most of the researches are conducted on the Android

platform. Due to the huge differences between these two

operating systems, the problems studied and the techniques

used are also different.

Third-party SDKs are widely used today by a large number

of apps and may have security issues. CredMiner [1] is de-

signed as an effective tool to extract SDK credentials through

static analysis and then validate them. The researchers focused

on storage and mail SDKs and successfully recovered some

266

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

developer credentials. Yang et al. concentrates on payment

SDKs and concluded that many developers violate security

rules, which may cause financial loss [13]. ClueFinder [14]

is an NLP-based learning system to identify privacy leakage

from apps to untrusted third-party libraries. It scales well on

a large number of Android apps.
Some studies focused on the network security of web-

based mobile apps. AUTOFORGE [15] is an automatic tool

to forge valid request messages from the client side, and have

uncovered the vulnerabilities of servers due to insufficient

checks. Mendoza et al. implemented a static analysis-based

web API reconnaissance approach to investigate the inconsis-

tencies of validation logic between client and web side [16].

SMARTGEN [17] can automatically expose hidden server

URLs and thus can judge whether these URLs are harmful.
Other vulnerabilities on mobile apps include the violation

of privacy requirements [18], origin message stripping during

the delivery of messages in webviews [19], residual of TLS

keys in the memory [20], and code injection attacks [21]. In

this paper, we differ from the efforts above in investigating

the misuses of SDK secrets of SDKs which have never been

studied before. Our work is conducted on iOS platform and we

designed an effective analysis approach to extract and study

these misuses of secrets.

VI. CONCLUSION

In this paper, we conducted an empirical study on the misuse

of SDK secrets in iOS apps. We implemented iCredFinder to

automatically extract SDK credentials within apps and then

validate them. For evaluation, we selected two widely-used

SDKs, the SDK of WeChat and Weibo, as our targets. Our

experiments on 100 iOS apps succeeded in extracting valid

SDK credentials from 66% (62/94) and 37% (29/78) of them,

respectively. Our evaluation has also uncovered that some

credentials are left unused in the apps. The exposure of SDK

credentials can cause security threats like the leakage of user

information and app data. Given the fact that a large number

of apps suffer from the exposure credential vulnerability, it is

urgent for the careless developers to adopt secure practices to

preserve these exposed SDK credentials.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for

their valuable comments and helpful suggestions. The work

was partially supported by the Key Program of National Nat-

ural Science Foundation of China under Grant No.:U1636217,

the General Program of National Natural Science Foundation

of China under Grant No.:61872237, and the National Key

Research and Development Program of China under Grant

No.: 2016YFB0801200. We especially thank the Ant Financial

Services Group for the support of this research within the

SJTU-AntFinancial joint Institution of FinTech Security.

REFERENCES

[1] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer creden-
tials in android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 2015,
p. 23.

[2] “Wechat and weibo release their financial reports for q3 2017,”
https://chozan.co/2017/11/16/wechat-data-weibo-data-q3-2017/.

[3] “Providing wechat login in your mo-
bile app,” http://open.wechat.com/cgi-
bin/newreadtemplate?t=overseas open/docs/mobile/login/guide.

[4] “Weibo sdk,” http://open.weibo.com/wiki/SDK/en.
[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy

leaks in ios applications.” in NDSS, 2011, pp. 177–183.
[6] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz, “Psios:

bring your own privacy & security to ios devices,” in Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and
communications security. ACM, 2013, pp. 13–24.

[7] X. Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “Os-level side
channels without procfs: Exploring cross-app information leakage on
ios,” in Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS 2018). Internet Society, 2018.

[8] Y. Li, Y. Zhang, J. Li, and D. Gu, “icryptotracer: Dynamic analysis on
misuse of cryptography functions in ios applications,” in International
Conference on Network and System Security. Springer, 2014, pp. 349–
362.

[9] D. Orikogbo, M. Büchler, and M. Egele, “Crios: toward large-scale ios
application analysis,” in Proceedings of the 6th Workshop on Security
and Privacy in Smartphones and Mobile Devices. ACM, 2016, pp.
33–42.

[10] P. Wang, D. Wu, Z. Chen, and T. Wei, “Protecting million-user ios apps
with obfuscation: motivations, pitfalls, and experience,” in Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice. ACM, 2018, pp. 235–244.

[11] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-
R. Sadeghi, “Sandscout: Automatic detection of flaws in ios sandbox
profiles,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 704–716.

[12] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private
api abuse in ios applications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 44–56.

[13] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu,
“Show me the money! finding flawed implementations of third-party in-
app payment in android apps,” in Proceedings of the Annual Network
& Distributed System Security Symposium (NDSS), 2017.

[14] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang, “Finding
clues for your secrets: Semantics-driven, learning-based privacy discov-
ery in mobile apps,” in Proceedings of the 2018 Network and Distributed
System Security Symposium, 2018.

[15] C. Zuo, W. Wang, Z. Lin, and R. Wang, “Automatic forgery of
cryptographically consistent messages to identify security vulnerabilities
in mobile services.” in NDSS, 2016.

[16] A. Mendoza and G. Gu, “Mobile application web api reconnaissance:
Web-to-mobile inconsistencies & vulnerabilities,” in S&P 2018: 39th
IEEE Symposium on Security and Privacy, 2018.

[17] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mobile apps with
selective symbolic execution,” in Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 867–876.

[18] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,
N. Sadeh, S. M. Bellovin, and J. Reidenberg, “Automated analysis of
privacy requirements for mobile apps,” in 24th Network & Distributed
System Security Symposium (NDSS 2017), NDSS, 2017.

[19] G. Yang, J. Huang, G. Gu, and A. Mendoza, “Study and mitigation
of origin stripping vulnerabilities in hybrid-postmessage enabled mobile
applications,” in S&P 2018: 39th IEEE Symposium on Security and
Privacy, 2018.

[20] J. Lee and D. S. Wallach, “Removing secrets from android’s tls,” in
Proceedings 2018 Network and Distributed System Security Symposium,
2018.

[21] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 66–77.

267

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:28:49 UTC from IEEE Xplore. Restrictions apply.

