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ABSTRACT

The only secrets in modern cryptography (crypto for short) are
the crypto keys. Understanding how crypto keys are used in a
program and discovering insecure keys is paramount for crypto
security. This paper presents K-HUNT, a system for identifying in-
secure keys in binary executables. K-HUNT leverages the properties
of crypto operations for identifying the memory buffers where
crypto keys are stored. And, it tracks their origin and propagation
to identify insecure keys such as deterministically generated keys,
insecurely negotiated keys, and recoverable keys. K-HUNT does not
use signatures to identify crypto operations, and thus can be used
to identify insecure keys in unknown crypto algorithms and propri-
etary crypto implementations. We have implemented K-HUNT and
evaluated it with 10 cryptographic libraries and 15 applications that
contain crypto operations. Our evaluation results demonstrate that
K-HunT locates the keys in symmetric ciphers, asymmetric ciphers,
stream ciphers, and digital signatures, regardless if those algorithms
are standard or proprietary. More importantly, K-HUNT discovers
insecure keys in 22 out of 25 evaluated programs including well-
developed crypto libraries such as Libsodium, Nettle, TomCrypt, and
WolfSSL.
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1 INTRODUCTION

Many applications today contain cryptographic operations. With-
out them, basic security mechanisms such as secure communication
and authentication can hardly be achieved. In modern cryptography
(crypto for short), there is no need to hide the crypto algorithms, i.e.,
their constructions are open. The only secret in modern crypto are
the crypto keys. The security of a crypto key depends on the size of
the key, the process that generates the key, and how the key is used.
Unfortunately, developers often make mistakes in key generation,
derivation, and sanitization that may result in keys being guessed
or leaked.

Over the past few years, we have witnessed numerous cases of in-
secure crypto keys in software implementations. For instance, some
keys are generated without sufficient randomness (e.g., the not-so-
randomly-generated numbers in virtualized environments [41]),
some keys can be easily leaked (e.g., due to software vulnerabili-
ties such as Heartbleed [38]), some keys can be forged (e.g., using
unauthenticated encryption [37]), and some developers may just
simply misuse the keys (e.g., using a constant symmetric key that
is never changed [39] or the same initialization vector to encrypt
different versions of a document [67]). As such, there is a strong
need to systematically inspect crypto implementations to identify
insecure keys.

Unfortunately, crypto software is difficult to analyze for a num-
ber of reasons. First, there is a large body of crypto algorithms
(e.g., symmetric ciphers, asymmetric ciphers, stream ciphers, dig-
ital signatures) that developers can use. Second, crypto software
is complex, e.g., it may contain multiple crypto algorithms such
as using an asymmetric cipher to exchange a symmetric key as
in TLS. Third, crypto software is often proprietary, and thus only
executables are available.

There exist prior works that use binary code analysis to analyze
crypto software. For example, ReFormat [66] and Dispatcher [32]
detect crypto operations based on the execution statistics of bitwise
and arithmetic instructions. Grobert et al. [43] propose to identify
specific crypto primitives (e.g., RC4, AES) and their parameters (e.g.,
plaintext or crypto keys) using crypto function signatures and
heuristics. Most recently, CryptoHunt [68] proposes a technique
called bit-precise symbolic loop mapping to identify commonly
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used crypto functions (e.g., AES, RSA). However, none of these prior
works detects insecure crypto keys.

In this paper, we present K-HUNT, a tool to identify insecure cryp-
tographic keys in an executable, without source code or debugging
symbols. K-HUNT does not use signatures to identify crypto algo-
rithms. Instead, it directly identifies crypto keys and analyzes them
to detect insecure keys. In a nutshell, K-HuNT identifies insecure
crypto keys by analyzing how keys are generated, propagated, and
used. It utilizes the runtime information to locate the code blocks
that operate on the crypto keys and then pinpoint the memory
buffers storing the keys. Meanwhile, it also tracks the origin and
propagation of keys during program execution.

We have implemented K-HUNT atop dynamic binary instrumen-
tation and applied it to analyze the x86/64 binaries of 10 crypto-
graphic libraries and 15 applications that contain crypto operations.
K-HunT identifies 25 insecure crypto keys including deterministi-
cally generated keys, insecurely negotiated keys, and recoverable
keys. Our results show that insecure crypto keys are a common
problem, as the 25 insecure keys K-HUNT identifies are spread
across 22 programs. Only three of the 25 programs evaluated do not
contain insecure keys. Surprisingly, K-HunT found insecure keys
in some well-established crypto libraries such as Libsodium, Nettle,
TomCrypt, and WolfSSL. We have made responsible disclosure to the
vulnerable software vendors, and patches are under development.

In short, we make the following contributions:

e We propose a novel binary analysis approach to identify insecure
crypto keys in program executables such as deterministically
generated keys, insecurely negotiated keys, and recoverable
keys. Our approach does not rely on signatures and can be
applied to proprietary and standard algorithms.

e We have designed and implemented K-HUNT, a scalable tool
that implements our approach. K-HuNT implements various
techniques to significantly optimize the performance of the
binary code analysis.

o The evaluation results on real world software show that K-HuNT
can analyze real world crypto libraries and COTS binaries to
identify insecure keys used by symmetric ciphers, asymmetric
ciphers, stream ciphers, and digital signatures.

2 BACKGROUND

Since crypto algorithms today are quite standard, developers are
mostly concerned about their implementation correctness and run-
time robustness. In contrast, the secure use of crypto keys has
attracted less attention. This is a problem because in many popular
crypto libraries the responsibility of key management is left to the
developers, who may not be crypto experts. Therefore, we have
witnessed numerous mistakes regarding insecure crypto keys. We
summarize below three common mistakes that lead to insecure
crypto keys, and that can be detected using K-HUNT.

Deterministically Generated Keys (DGK). NIST has pointed
out that “all keys shall be based directly or indirectly on the output of
an approved Random Bit Generator (RBG)” [31]. However a common
mistake is deterministic key generation, i.e., deriving key material
from data sources without enough entropy. A hard-coded key in
the program is a case of deterministic key generation. Another
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case is when the key generation process does not provide strong
randomness, which enables brute-force attacks against such keys.

Insecurely Negotiated Keys (INK). A key agreement protocol
(or key exchange protocol) defines the series of steps needed to
establish a crypto key for secure communication among two or
more parties. Such protocols allow the participants to securely es-
tablish shared keys over an insecure medium, without the need of a
previously-established shared secret. An important requirement for
a key agreement protocol is that two or more parties should agree
on a key in a way that they all should influence the outcome of the
key. This precludes any undesired third parties from influencing the
key choice and is essential to implement perfect forward secrecy.
An insecurely negotiated key happens when the key agreement
protocol allows a single peer to generate the shared secret without
involving the other peers. In particular, many proprietary key agree-
ment protocols directly designate one party to generate the key
and then send that key to other parties. In these cases a malicious
peer can surreptitiously weaken the protocol’s security [30].

Recoverable Keys (RK). Keeping crypto keys unnecessarily long
in memory is a vulnerability due to lack of key sanitization. It cre-
ates an attack window for attackers to recover the key that can be
exploited through code injection or side channel attacks [46, 48].
One root cause of missing crypto key sanitization is that key buffers
are usually allocated on the stack or the heap managed by the oper-
ating system (OS). However, the OS seldom sanitizes such memory
regions. For instance, if a key buffer is allocated on the heap and is
freed after the crypto operation, popular OSes such as Windows and
Linux will not immediately wipe it. Instead, the buffer is only labeled
as “unused” and will be wiped only when re-allocated. Furthermore,
in popular crypto libraries the key sanitization responsability is left
to the applications, whose developers may not be crypto experts.

3 OVERVIEW

We use a simple but representative program, illustrated in Figure 1,
to demonstrate how our insecure crypto key detection works. This
simple program encrypts Data through masking a Key generated
by the keygen function. The program captures a crypto operation
(a simple cipher that mixes Key and Data) and a crypto key man-
agement (a home-made key derivation that generates a random
key). It has an insecure crypto key because 1) the key only contains
four bytes of randomness and 2) the key is not sanitized after the
encryption.

To detect the insecure crypto key in this running example, a
security analyst would need to (1) find which code blocks are crypto
related; (2) identify the crypto key used by those blocks; (3) check
how the identified crypto key is generated, i.e., which data sources
affect it and how it is derived from those key materials; and (4)
monitor key propagation (i.e., the memory buffers that store the
key) to check whether it is still available after the crypto operation.
K-HunT is designed to automate these steps with a principled
approach.

Challenges. To detect insecure keys using the above steps, our
approach needs to address the following challenges:
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1 uint8_t Key[16];
2 uint8_t Data[256] = {@};
3
4 void keygen(uint8_t * key, size_t len)
5
6 uint8_t seed[4];
7 for ( size_t i =0; i< 4; ++i )
8 seed[i] = rand() & oxff;
9 for ( size_t i =0; i < len; ++i )
10 key[i] = seed[i % 4];
1 }
12
13 void encrypt( uint8_t * buf, size t len )
14 {
15 for ( size_t i =0; i < len; ++i )
16 buf[i] "= Key[i % 16];
17 }
18
19 int main()
20 {
21 keygen(Key, 16);
22 encrypt(Data, 256);
23 }
(a) A simple crypto scheme
0040101E call rand keygen
00401023 and eax, OFFh
00401028 mov ecx, [ebp+var_8]
0040102B mov [ebp+ecx+var_C], al
00401057 mov eax, [ebp+arg_0]
0040105A add eax, [ebp+var_4]
0040105D mov cl, [ebp+edx+var_C]
00401061 mov [eax], cl ;
0040108E mov  eax, [ebp+var 4] encrypt
00401091 xor edx, edx
00401093 mov  ecx, 16h
00401098 div  ecx
0040109A movzx edx, byte_413780[edx] ;
004010A1 mov  eax, [ebp+arg 0]
004010A4 add eax, [ebp+arg_ 4]
004010A7 movzx ecx, byte ptr [eax]
004010AA xor ecx, edx
004010AC mov  edx, [ebp+arg 0]
004010AF add edx, [ebp+var_4]
004010B2 mov  [edx], al

(b) Partial corresponding disassembly code

Figure 1: An example illustrating typically how a crypto key
is used in a binary executable.

o How toidentify crypto operations without signatures. Pre-
vious works that analyze crypto software often rely on sig-
natures for specific crypto algorithms. Thus, if the algorithm
is proprietary, the identification would fail, as no signatures
would typically be available. In Figure 1a, the simple, home-
made crypto operation cannot be identified with signatures.

e How to identify the crypto keys. Even when the crypto oper-
ation has been identified, how to accurately locate the memory
buffer that contains the crypto key is still non-trivial. For in-
stance, the encrypt function in Figure la accesses two buffers:
Data and Key. Unfortunately, when analyzing binary executa-
bles, there is no semantic information available on the buffers.
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Thus, our approach must identify which buffer is the crypto key
buffer.

e How to detect insecure crypto keys in complex programs.
Having identified the buffer holding a key, we still need to deter-
mine if the key is correctly derived and managed. Unfortunately,
programs that contain crypto algorithms are often complex and
these algorithms usually only occupy a very small percentage of
the entire program. It is infeasible and ineffective to analyze the
whole program executable. Thus, we have to design an efficient
way for detecting insecure crypto keys.

Insights. Fortunately, all of the challenges listed above can be
solved with the following key insights:

¢ Identifying crypto operations independent of their im-
plementation. Oftentimes, crypto operations are identified by
scanning the implementation with signatures of well-known
crypto algorithms. However, such approach cannot detect propi-
etary algorithms. Instead, our approach identifies the crypto
basic blocks at the core of the crypto operation. For this, it uses a
dynamic analysis technique that leverages the insight that these
core basic blocks usually mingle crypto keys and data, and thus
have distinct properties. For instance, as shown in Figure 1a,
the key masking operation (at line 16) reads from two data
buffers and produces the ciphertext. Such crypto basic blocks
have distinguishable properties such as high use of arithmetic
instructions, producing data streams with high randomness, and
having execution length proportional to the input size. If a basic
block meets these three constraints, it is very likely that it is a
crypto basic block.

e Locating the crypto keys. Once the core crypto basic blocks

are identified, our approach then examines the data accessed by

those blocks. Typically, a crypto basic block will process two
inputs. For encryption, the plaintext and the key. For decryption,
the ciphertext and the key. And, for digital signatures, the input

message and the key. Note that while the verify function of a

digital signature takes three inputs (message, key, signature),

only the message and the key are used in the crypto operations.

Therefore, in all three cases we need to separate the crypto key

from the other input. Interestingly, we notice that the size of the

crypto key is usually very small (e.g., 128-bit) compared to the
plaintext, ciphertext, or message, which could be of arbitrary
length. We also observe that the crypto key and the other in-
put are usually stored at different memory buffers. And, those
buffers are usually filled with content derived from different
data sources, e.g., a pseudo-random generator for keys and the
network or the filesystem for the plaintext/ciphertext/message.
Detecting the insecure crypto keys. Since it is very complex
to analyze the entire program to understand the handling of
crypto keys, we instead propose a key-centric strategy. Having
identified the crypto operations and located the crypto keys, we
use the identified keys as an index to further check the origin
of each key and its propagation. For instance, through checking
the origin of the key in Figure 1 we can find that it is generated
from the keygen function at line 10, and through checking the
input of this function we can discover the crypto key buffer
contains inadequate information (i.e., only 32 bits) . Moreover,
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by monitoring the key buffer we can observe that its content
is preserved until the program terminates, and thus it is an
insecure crypto key. This backward and forward key tracking
hence provides a simple way to detect insecure crypto keys.

Problem Scope. The objective of this work is to identify insecure
crypto keys in binary executables. In particular, we focus on de-
tecting (1) whether the key is generated from deterministic inputs,
(2) whether a shared key is generated using key materials from a
single party, and (3) whether the key is not sanitized immediately
after the cryptographic operations. We focus on analyzing x86/64
stripped executables without source code or debugging symbols.
In addition, we focus on ciphers (symmetric, asymmetric, stream)
and digital signatures. For these classes of cryptographic primitives,
it does not matter which specific crypto algorithm the program
uses. Thus, our approach handles both standard and proprietary
algorithms. Other cryptographic primitives such as hash functions
do not use keys, or in the case of keyed hashes they do not apply
the crypto operations on the input and the key simultaneously.

4 DESIGN

K-HUNT uses dynamic analysis to identify insecure crypto keys.
It assumes that there exist test cases to execute the program so
that it uses the crypto operations. Our approach uses dynamic
analysis because it needs statistics about the program execution.
Furthermore, static analysis faces many limitations for analyzing
memory buffers, which store the crypto keys. At a high level, K-
HuNT comprises of two phases:

e Pinpointing the Key. In the first phase, detailed in §4.1, the
target program is executed with a lightweight coarse-grained
binary code instrumentation to firstly identify the crypto basic
blocks and then identify the crypto keys they use.

e Detecting the Insecure Key. In the second phase, detailed
in §4.2, the target program is executed again with a heavy-
weight fine-grained instrumentation, which tracks the memory
reads and writes and conducts a function level taint analysis.
Through taint analysis of the pinpointed keys, K-HUNT then
detects the insecure crypto keys.

4.1 Pinpointing Crypto Keys

The first phase of K-HUNT is to pinpoint the crypto keys. An
overview of how K-HUNT performs this analysis is presented in Fig-
ure 2. It first identifies the crypto basic blocks by running the
executable with multiple test inputs, and then analyzes the data
those basic blocks operate on to locate the crypto keys.

Step-I: Crypto Basic Block Identification. One observation of
modern crypto algorithms (e.g., AES, RSA, DSA) is that they are
typically built with only a few compact transformations, which
correspond to just a few basic blocks in a program. Therefore, if
we can identify these basic blocks, we would identify the crypto
operations that use them.

DEFINITION 1. A crypto basic block is defined as a basic block
that satisfies the following constraints: (i) the basic block uses arith-
metic calculations to implement a cryptographic operation; (ii) the
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basic block is executed multiple times to mix a data stream with a key
stream;; (iii) the produced or consumed data have high randomness.

Our approach first computes, for each basic block, the ratio of
x86/64 arithmetic and bitwise instructions (e.g., mul, and xor) [27,
32]. A basic block is considered a candidate crypto basic block if
it has a ratio larger than a pre-defined threshold. This threshold
has been experimentally selected as 15% in our current design after
analyzing common crypto libraries and utilities. A special case is
that a basic block is directly considered a candidate if it contains
instructions from the Advanced Encryption Standard instruction set
(AES-NI), an extension to the x86 instruction set for microprocessors
from Intel and AMD.

Next, it checks whether the candidate basic blocks are data sensi-
tive. A basic block is data sensitive if the total amount of execution
for the basic block is proportional to the size of its input data. We
prepare four test suites with inputs of different size magnitude
to test the program, and calculate for each candidate basic block,
the total number of executions of the basic block across all inputs,
the total basic block’s input data size, and the total basic block’s
output data size. Candidate basic blocks for which the number
of executions increases approximately linearly with the ratio of
input/output data size are kept as candidate crypto basic blocks.
Other candidates are discarded.

At this point, our approach has checked the first two conditions
in Definition 1. The last condition checks if the data operated on by
the candidate basic block has high randomness. However, each time
a basic block is executed it only operates on part of the input data.
Thus, our approach accumulates all the data that each candidate
basic block operates on during the entire program execution into
data bundles.

DEFINITION 2. A data bundle is defined as the sequence of all the
data that an operand of an instruction operates on during the entire
execution of the program. The size of a data bundle is the number of
data items it contains.

For example, in Figure 1b the instruction at 9x0040109A has one
memory read operation and is executed 256 times. Therefore, there
will be a data bundle with 256 data items: the sequence of value
read that is from by te_413780[edx]. Our approach focuses on data
bundles that are generated by instructions with memory operands,
since registers have a limited size that does not typically hold a
crypto key. Once the data bundles are built, they are examined
to identify those that contain highly random data. For this, our
approach leverages the ent [40] utility to measure the randomness
of the collected data bundle with both Chi-Square distribution and
Monte Carlo rt approximation tests. If ent judges the data bundle
as random, the candidate basic block is considered a crypto basic
block.

In our running example in Figure 1b, the basic block (0x0040108E-
0x004010B2) is the crypto basic block to be identified. It satisfies
the above constraints for a crypto basic block: it utilizes arithmetic
and bitwise instructions to implement the crypto operation, the
number of executions of the basic block is proportional to the size of
the input data, it accesses several memory buffers, and its produced
data has high randomness.
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Basic Block 1
Num of Exec = L

Basic Block 2
Num of Exec = 10
Num of Exec = 1
Basic Block 3

0040108E mov
00401091 xor
00401093 mov
00401098 div
0040109A movzx
004010A1 mov
004010A4 add
004010A7 movzx
004010AA xor
004010AC mov
004010AF add
00401082 mov

ecx

crypto basic block
identification

eax,
edx,
ecx,

edx,
eax,
eax,
ecx,
ecx,
edx,
edx,

[ebp+var_4]

edx
10h

byte_413780[edx]
[ebprarg_0]
[ebp+arg_4]

byte ptr [eax]

edx

[ebp+arg 0]
[ebp+var_4]
[edx], al

010010010101010101111
110101001010101010101
010101010101010101000
101001101910101010101
01010191%0006909
000101 101010
101111

Key buffer
identification

data
clustering

11@o1
11101

101010
1010101 000000
0000101 1010101
010111101110101010101
010101010110101000000
000001010101111101010

Executed Basic Blocks

Crypto Basic Blocks

Data Bundles % Crypto Key

Figure 2: The process of pinpointing crypto keys in binary executables

Step-II: Crypto Key Buffer Identification. Having identified the
crypto basic blocks in Step-1, our approach next identifies the crypto
keys used by those basic blocks. Different types of data may be
handled by a crypto basic block: crypto key, plaintext, ciphertext,
and message to be signed. More concretely, a crypto operation will
take two inputs: crypto key and plaintext for encryption, crypto
key and ciphertext for decryption, and crypto key and message for
digital signature. Thus, the crypto key should always be an input to
the crypto basic block. Therefore, we can exclude the data output
by the crypto basic block and just focus on the input data. Still, our
approach has to separate the crypto key from the other input. And,
it can no longer use randomness for this since both the crypto key
and the ciphertext will have high randomness.

DEFINITION 3. A crypto buffer is defined as all operated memory
addresses in one data bundle of a crypto basic block, and the size of a
crypto buffer is the number of unique memory addresses it contains.

For instance, the memory read data bundle of the instruction
at 0x0040109A in Figure 1b contains 256 items. This bundle, how-
ever, only contains 16 unique memory addresses, thus the size of
corresponding crypto buffer is 16 instead of 256. When we test the
randomness of the data, we use the concept of bundle because a
buffer may be accessed randomly and we should concern about
the access sequence. If the high randomness is discovered, we then
only concern about the range of accessed memory, and thus we use
the concept of buffer to help distinguish key from data.

To identify which input is the crypto key buffer, K-HunT lever-
ages the following two complementary insights.

o Using the buffer size. Typically, the crypto key buffer is small
compared to the ciphertext/plaintext/message buffer: a key can
be stored in a relatively small buffer but the crypto input often
needs a larger memory buffer. This feature becomes even more
obvious when executing the crypto basic blocks with multiple
inputs: either the key is repeatedly used or it is updated between
different iterations (e.g., the state update of a stream cipher),
and the key is generally stored in a fixed-length memory buffer
whereas the length of the ciphertext/plaintext/message varies
according to the size of the program input.

e Using the execution context. The other insight is that crypto
keys and other input data are typically initialized by different
functions. If we track the execution context of how the data is
initialized, we can easily differentiate them as well. For instance,
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the used crypto key buffer is usually initialized by a key deriva-
tion function or from a pseudo-random number generator, while
the plaintext/ciphertext/message is generally directly read from
a file or network socket.

4.2 Detecting Insecure Keys

The second phase of K-HUNT detects the insecure crypto keys.
Unlike the first phase where we perform a lightweight dynamic
binary analysis to collect execution statistics (e.g., the number of
executions for a basic block and the randomness of data bundles),
the second phase requires a heavyweight dynamic binary analysis
to trace how keys are generated and propagated. At a high level,
our analysis is a function-level variant of dynamic taint analysis
(e.g,. [59, 63]) with the following taint policies.

Taint Sources. K-HUNT uses three different taint tags to capture
whether a value has been derived from a local input (i.e., filesystem
or return value from the rand function), a remote input (i.e., the
network), or none of those two (i.e., deterministic value). Thus,
each memory location (i.e., byte) in the shadow memory [63] has
a two-bit taint tag with values 00 for no input, 01 for local input,
and 10 for remote input. At initialization, all memory locations
will be assigned the no-input tag. During program execution, if
K-HuNT observes that a memory location is assigned from local
input (remote input), K-HUNT assigns the local (remote) taint tag
to the memory location. For instance, Key at line 13 in our running
example in Figure 1a will be assigned with a local input tag.

In addition, to quantitatively measure how many of bytes of
information generated for crypto keys, we introduce the concept
of the length of input for the buffer involved for key generation.

DEFINITION 4. The input length (IL) of a buffer is the number of
bytes derived from program inputs.

For instance, in our running example the keygen function initializes
four bytes of the seed buffer using function rand. Then K-HunT
keeps a 4-byte IL for this buffer.

Taint Propagation. K-HUNT could use a fine-grained taint anal-
ysis (e.g., [59]) to trace each instruction and propagate the taint
tags correspondingly. However, we found such an approach often
incurs high performance overhead to the analyzed program, e.g.,
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causing a remote peer to close the network socket due to connec-
tion time out, or the GUI freezing for non-networking programs,
e.g., WinRAR. Therefore, we have develop a lightweight, function-
level, taint propagation policy, which propagates taint tags based
only on the memory read and memory write operations inside the
execution context of a function. This propagation is based on the
fact that K-HUNT only requires knowing whether a buffer contains
data from either deterministic, local input, or remote input (i.e., the
three taint tags). Therefore, it does not need to propagate the taint
tags precisely for each instruction. Instead, it can propagate taint
tags at the higher function level, significantly improving efficiency.

More specifically, K-HUNT taints all the data definitions (i.e.,
memory writes) inside a function using the taint tag of the input
data. As such, it only needs to instrument the memory read and
write instructions. The memory read instructions define the taint
source for the function, and the memory write instructions define
the taint tags for the memory data based on the current function’s
taint . If a new taint source to the function is observed, the new
taint tags are unioned with the current function’s taint tag. All
the defined data inside this function will from that point on have
a unioned taint tag (e.g., tag with bits 11 to represent both local
and remote input). In our running example, the seed buffer in the
keygen function will be tainted with local input tag, and thus the
global Key buffer will also be assigned the local input tag.

While propagating the taint tags, we also propagate the IL for
the buffers. Such information is particularly useful for determining
whether a key has sufficient randomness. In particular, for each
function, K-HUNT tracks the total number of IL. Then whenever
there is a memory write information, it propagates the current IL
to this buffer. When the function returns, it recalculates the IL for
each buffer based on both the number of bytes accessed and also the
current IL for this function. Assume that one function accesses two
buffers during its execution. K-HUNT records how many bytes in
each buffer are accessed, respectively. If the number of bytes does
not exceed the IL of the host buffer, K-HuNnT adds this number to
the IL of the newly initialized buffer. Otherwise it adds the IL of the
host buffer to the IL of the new buffer. Finally, we check whether
the IL of the new buffer is larger than the size of the buffer. If so,
the IL is adjusted to the size of the buffer. Through performing such
IL propagation, K-HUNT maps the information from input buffer to
the output buffer of one function.

Taint Sinks. With the aforementioned taint sources and taint prop-
agation policy, all the memory locations will have a taint tag show-
ing whether the data comes from local or remote input, or is deter-
ministic. To identify insecure crypto keys, K-HUNT checks the taint
tag of the buffer at the crypto basic block (to check whether the key
is improperly generated) or when the program exits (to check for
key residue). In particular, we use the following policies to detect
the insecure crypto keys.

o Detecting DGK. If a key is not derived from any input, i.e., is
deterministic, then K-HUNT considers that the generation of the
key is flawed. In addition, K-HUNT checks whether the key re-
ceives enough information from non-deterministic inputs. This
is done through an analysis of the key buffer IL. For example, in
our running example the key is initialized in the keygen func-
tion. At the beginning of the function a seed buffer is initialized
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with a 4-byte IL. Then the key buffer in the same function is
initialized. At that time, the IL of the key buffer is also assigned
as 4 because the function only accesses one buffer with a 4-byte
IL. As a result, even if the size of the key buffer is 16, it has a
smaller IL of 4-byte. Eventually, if the IL of a key buffer has
the size less than a threshold, 16 bytes (128 bits) in our current
design, we consider the key is insecure. In this case the used
key buffer has a 4-byte IL and is obviously insecure.

e Detecting INK. An insecurely negotiated key is a crypto key
shared between two parties (e.g., a session key between a client
and a server) where the key value is only influenced by one
party [30]. A negotiated key is the symmetric key used for en-
crypting or decrypting network data. If we know there is a
negotiated key but the taint tag for this key includes only local
input tag or remote input tag (not both), K-HUNT considers this
is an insecurely negotiated key.

e Detecting RK. When a crypto operation terminates, all mem-
ory buffers holding involved crypto keys should be cleared [69].
To detect any recoverable keys, K-HUNT searches the memory
to check any partial existences of the keys in memory when the
process terminates. A key is considered recoverable if one third
of its content still exists in memory [49]. Therefore, we cross
check the content of the data bundles, and if one third of the con-
tent still matches with the original key buffer, K-HUNT considers
it a recoverable key. In our running example, the Key buffer is
allocated in the global memory region, and is not cleared after
process termination. K-HUNT therefore detects it is an RK case.

5 IMPLEMENTATION

We have implemented K-HUNT using Intel PIN [56], a popular dy-
namic binary instrumentation (DBI) framework. We use dynamic
analysis instead of static analysis for different reasons. First, we
need to measure execution statistics such as the randomness of the
runtime data and the number of executions of a basic block. Second,
static analysis faces limitations analyzing memory buffers, e.g., due
to indirect memory addressing. Third, the static dentification of
function boundaries, needed for the function-level taint propaga-
tion, is challenging, especially for C++ libraries [28]. Using DBI,
K-HUNT can leverage the runtime information to identify function
boundaries. Finally, DBI is able to handle executables with some
protections (e.g., code packing or VM obfuscation).

We have implemented three Pintools for code profiling, random-
ness testing, and key tracking. In Phase I, the executable is first run
with the code profiling Pintool to find which candidate basic blocks
should be tested for randomness. Then, the program is executed
again with the randomness testing Pintool to collect the runtime
information needed for the randomness test. In Phase II, the key
tracking Pintool is used to check how program inputs affect the
key derivation and how crypto keys are propagated.

To detect the key residue, we should rigorously have imple-
mented a kernel module to monitor all of the process pages be-
longing to the target process right after the process terminates.
Unfortunately, PIN does not provide such kernel-level APIs. In-
stead, we instrument the callback function PIN_AddFiniFunction
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in our key tracking pintool to trigger the memory check. This call-
back is invoked right after the execution of all user defined cleanup
functions and before the process terminates.

Labeling Program Inputs. K-HUNT needs to set the input taint
tag when the program receives local or remote input. To this end, it
hooks the system APIs that deal with such inputs (e.g., read, fread,
recv), as well as APIs related to random number generation (e.g.,
rand()). The local tag is set if the input comes from the filesystem
or a random number generation AP, and the remote tag if the input
comes from a network socket.

Differential Testing. K-HUNT can optionally use a differential
analysis step to identify candidate basic blocks in Phase I that are
unrelated to crypto operations, and thus be removed from the can-
didate set. To this end, it compares two traces, obtained by running
the program executable with and without triggering the crypto op-
erations (e.g., executing 7-zip with or without file encryption). Then,
it identifies candidate basic blocks that do not appear in the execu-
tion with crypto operations, as well as candidate blocks that apper
in both executions with and without crypto operations. In both
cases, those candidate basic blocks cannot be crypto basic blocks.
Note that differential analysis is just an optional optimization to
reduce the number of candidate basic blocks to be considered.

On-Demand Tracing. Crypto operations are often CPU-intensive
and a dynamic analysis with large performance overhead could
significantly interfere with the normal program execution. To ad-
dress this, K-HUNT uses on-demand tracing , applying heavyweight
program analysis only on necessary code blocks. For instance, in
the first phase, both the number of executions of candidate basic
blocks and the data randomness are analyzed to determine the
crypto basic blocks. However, the testing of randomness requires a
time-consuming analysis. To reduce this overhead, K-HUNT first
uses code profiling to count the number of candidate basic block
executions and excludes irrelevant candidate basic blocks. In this
manner, it only needs to apply the more expensive randomness test-
ing on the remaining candidate basic blocks. In the second phase of
analysis, K-HUNT only instruments the memory read and memory
write instructions to propagate the taint tag at function level, as
described in §4.2. This significantly reduces the overhead of our
taint analysis.

Entropy Test. A time-consuming step in K-HUNT is the random-
ness test. To speed this step, we conduct a more lightweight entropy
test before, so that the randomness test is only applied to those bun-
dles with high entropy. Note that a bundle with high randomness
must also possess high entropy, while a bundle with high entropy
may not have high randomness [65].

Online Analysis. K-HUNT uses an online analysis approach. It
could also operate on execution traces to reduce the runtime over-
head. Nonetheless, we found an online approach is more suitable to
our goal because offline analysis leads to extremely large execution
traces (often >100GB), which create an I/O bottleneck slowdown.
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Library Version Category Protection
Botan [3] 1.10.13 Crypto Libraries -

Crypto++ [6] 5.6.4 Crypto Libraries -

Libgcrypt [11] 1.6.6 Crypto Libraries -
LibSodium [12] 1.0.12 Crypto Libraries -
LibTomerypt [13] 1.17 Crypto Libraries

Nettle [16] 33 Crypto Libraries -

GnuTLS [7] 3.5.13 SSL/TLS Libraries -

mbedTLS [21] 2.3.0 SSL/TLS Libraries -

OpenSSL [17] 1.1.0f SSL/TLS Libraries -

WolfSSL [26] 3.9.10 SSL/TLS Libraries -
Application Version Category Protection
7-Zip [1] 9.20 File Compressor -

Cerypt [4] 1.10 File Encryptor UPX
Cryptcat [5] 1.2.1 Messenger -
Cryptochief [20] 1.337 File Encryptor

Enpass [2] 5.6.0 Password Manager -

Imagine [8] 1.1.0 Picture Browser UPX
IpMsg [9] 4.60 Messenger -

KeePass [10] 1.34 Password Manager -

MuPDF [15] 1.11 PDF Parser -

PSCP [18] 0.62 SSH client -

Sage [19] 2.0 Ransomware -

Ultrasurf [22] 15.04 Proxy client Themida
WannaCry [23] 1.0 Ransomware Dynamic DLL
Weet [24] 1.11.4 Downloader -

WinRAR [25] 5.40 File Compressor -

Table 1: The collected binary executables in our benchmark.

6 EVALUATION

We have tested K-HunT with 10 popular crypto libraries and 15
real-world programs, identifying many insecure keys among these
programs. In this section, we present our evaluation results. We first
describe our experimental setup in §6.1, then present the detection
results for crypto keys in §6.2, and finally detail the identified
insecure keys in §6.3.

6.1 Experiment Setup

As far we know, there are no standard benchmarks that cover widely
used crypto algorithms. As such, we create a benchmark, detailed
in Table 1, that contains recent versions of 10 crypto libraries and
15 real-world programs that use crypto operations. Our collected
benchmark suite includes: (a) popular standard symmetric ciphers
(AES, Twofish), asymmetric ciphers (RSA), stream ciphers (RC4,
ChaCha20), and digital signatures (DSA, ECDSA, Ed25519); (b)
different key sizes for the same algorithm (e.g., AES-128, AES-256);
(c) one proprietary cipher (Cryptochief); (d) proprietary programs
for which we do not have access to the source code (Cryptochief,
Imagine, UltraSurf, WinRAR); (e) benign programs that use binary
code protection techniques such as code packing (Ccrypt, Imagine,
UltraSurf); and (f) two samples from recent ransomware families
(Sage, WannaCry).

For each crypto library, we developed test programs to encryp-
t/decrypt using AES, RSA, and to sign/verify using ECDSA. Since
Libsodium does not support RSA and ECDSA, we included the Ed25519
digital signature instead.

For each program, we have manually built the ground truth re-
garding their key management using the program’s source code
(when available), or by manually reverse-engineering the executa-
bles (for proprietary programs and malware). Note that for pro-
grams for which source code is available, we only use the source
code to build the ground truth. K-HUNT operates on executables
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Target Algorithm B1 B2 B3 N S 1L
AES-256 53 13 7 1 240 32

Bot RSA-2048 1180 569 162 6 1024 256
otan ECDSA 958 921 300 2 224 128
AES-256 1281 26 5 1 240 32

Crvptoss RSA-2048 1949 924 214 6 89 256
ypto ECDSA 1916 1425 305 8 288 64
AES-256 126 25 3 1 240 32

r— RSA-2048 565 463 153 6 896 896
1DECryP ECDSA 340 322 49 10 320 9%
LibSodium AES NI-256 7 4 4 1 240 32
. Ed25519 690 686 171 8 288 256
AES-256 60 43 4 1 240 32

LibTomervpt  RSA-2048 404 385 69 7 1152 1152
YPL pepsa 33 274 72 4 128 97
AES-256 38 13 3 1 240 32

Nettle RSA-2048 411 87 61 6 1152 89
ECDSA 186 92 39 8 288 32
AES-256 44 40 131 240 32

RSA-2048 154 138 39 12 1664 256
mbedTLS ECDSA 255 245 47 9 384 64
AES-256 58 10 4 1 240 32

OpenSSL RSA-2048 210 175 41 10 1552 640
P ECDSA 188 143 17 6 192 50
AES-256 50 36 4 1 240 32

. RSA-2048 295 235 36 7 1152 1152
WolfSSL ECDSA 277 202 27 5 160 32
7-zip AES NI-256 2 2 2 1 240 32
Cerypt AES-256 44 5 1 1 240 32

Cryptcat Twofish 54 14 7 1 160  varied
Cryptochief Proprietary # 23 12 1 1 8 3
Enpass AES NI-256 8 3 3 1 240 32
Imagine DSA-1024 * 241 72 12 5 464 928
IpMsg AES-256 168 12 4 1 240 32
Keepass AES-256 481 118 19 1 240 32
MuPDF AES-128 262 46 4 1 176 16
PSCP AES-256 195 9 5 1 240 32
Sage ChaCha20 * 31 17 2 1 256 32
UltraSurf RC4 = 191 79 6 1 1024 16
WannaCry AES-128 * 26 12 3 1 352 16
Weet AES-256 268 22 3 1 240 32
) AES-128 * 181 58 3 1 176 32
WinRAR AES-256 * 214 51 3 1 240 48

Table 2: Results of the key pinpointing and key identifica-
tion. * denotes that the implementation of this algorithm is
proprietary.

and does not require access to the program’s source or debugging
symbols.

Input Preparation. We have prepared test cases of different sizes
for each program, so that each test case triggers a cryptographic
operation. The test cases can be easily produced using the high-level
descriptions of the software available on their webpages, e.g., that
it encrypts a file with password, there is no need to know any low
level details about the program. Furthermore, most of the payload
of the test cases can be random, as long as the crypto operation is
triggered. For the differential analysis, we also prepared test cases
of different sizes that do not trigger a crypto operation.
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Executions. For each test case, K-HUNT executes the program
three times with different instrumentations. In the first execution,
K-HuUNT obtains basic block statistics to identify candidate crypto
basic operation blocks. In the second execution, K-HUNT tests the
data randomness to identify the actual crypto basic blocks and
analyzes them to locate the crypto keys. In the third execution,
K-HunT performs the taint analysis of the crypto keys to detect
insecure crypto keys.

Host. K-HUNT can run on both Windows and Linux thanks to Pin’s
support for both platforms. We use a Dell workstation installed with
both Windows 7 and Fedora 25 operating systems as the testing
platform. The workstation has an Intel Core i7-6700 CPU (3.4GHz),
with 16GB physical memory and a 2TB disk.

6.2 Effectivenesses of Key Identification

Table 2 details the results of K-HuNT’s key buffer pinpointing for
each of the programs!. The table shows in column B1 the number
of candidate basic blocks that contain a high arithmetic instruc-
tion ratio; in B2 the subset of B1 candidate basic blocks with a
linear relation with the input size; in B3 the number of identified
crypto basic blocks, i.e., B2 candidate basic blocks that produce data
bundles with high randomness; in N the number of identified key
buffers; in S the total size of the identified key buffers; and in IL
the input length of the identified key buffers.

We can observe from columns B1-B3 that all three constraints
to identify crypto basic blocks are needed. If we only use the first
constraint, i.e., arithmetic instruction ratio, many irrelevant basic
blocks are included especially for data transformation programs
(e.g., WinRAR, MuPDF). If we only use the first two constraints,
asymmetric ciphers still have a large number of candidate basic
blocks. Thus, we must also the randomness of the operated data to
locate the crypto basic blocks that actually use the crypto key.

We evaluate the correctness of the crypto key detection using
the manually-generated ground truth. We do not find any false
positives among these programs, but false positives are possible in
some cases discussed in §7, e.g., if keys are stored in registers. We
find two false negatives, one in Wget, the other in PSCP. Both are
due to key exchange protocols that combine an asymmetric cipher
with a symmetric cipher. In both cases, K-HUNT only discovers the
secret key of the symmetric cipher because there is a linear relation
between the number of crypto basic block executions and the input
size. Since the input for the asymmetric cipher is a single block
when protecting the symmetric key, K-HUNT is not able to pinpoint
the public keys. However, if the public key is used to protect the
data rather than the key our analysis is able to identify these public
keys (e.g., the case of Imagine discussed in §6.3).

To better understand how our analysis performs, we have con-
ducted an in-depth investigation and obtained a number of inter-
esting findings, which are summarized below:

Key buffers of block ciphers. In our benchmark the most fre-
quently used cipher is the AES block cipher. We found that all of the
AES implementations store the round keys (11 or 15 rounds) in one
key buffer (176 or 240 bytes). Nonetheless, the format of those key

!Note that GnuTLS is missing because it relies on Nettle or Libgcrypt as its crypto
backend, and the results of both Nettle and Libgcrypt are already listed.
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buffers are often diversified in terms of byte orders and buffer sizes.
For instance, AES key buffers of WinRAR and Putty-SCP use differ-
ent byte orders. Meanwhile, malware authors can also deliberately
obfuscate the key format to evade the detection. We found that the
recent ransomware, WannaCry, allocates a non-standard AES-128
round key buffer with double the normal size (i.e., 352 instead of
176 bytes). As a result, signature-based key searching techniques
(e.g., [14, 57, 64]) are unlikely to identify the key. K-HUNT instead
is not affected by such an implementation variation. Additionally,
K-HunT handled Intel’s hardware AES encryption in the case of
Libsodium, Enpass, and 7-zip through directly labeling AES NI instruc-
tions and identifying the relevant key buffers.

Key buffers of stream ciphers. In our benchmark three programs
(Cryptochief, Ultrasurf, and Sage) use stream ciphers. A stream cipher
often maintains a “state” in a fixed-length memory buffer to update
the key stream. This state is continuously updated during the en-
cryption. Therefore we could not distinguish it by simply assuming
the key is immutable. K-HUNT pinpoints the key buffer from crypto
blocks that operate on it, and accurately detects its range. The key
buffers of stream ciphers RC4 and ChaCha20 are both 256 bytes and
the home-made stream cipher in Cryptochief [20] uses a 8-byte key
buffer, as shown in the S-column.

Key buffers of public-key ciphers. Unlike block ciphers and
stream ciphers where K-HUNT identifies a single buffer (N column
in Table 2), K-HuNT identified multiple key buffers for asymmetric
ciphers. This happens because public keys used by asymmetric
ciphers usually consists of several components that may be stored
in different buffers, e.g., d and n in RSA. Interestingly, we found
the length of key buffers are often much larger than the length of
the required public key. We then checked the source code of each
crypto library and found that certain public key encryption are
actually implemented in a very optimized way, which often uses
a varied public key with larger integers. For instance, we found
all tested crypto libraries implement the RSA algorithm with the
Chinese Remainder Theorem (CRT) optimization, which requires
a number of extra parameters (e.g., dp, dq, qinv) besides the well-
known parameters (e.g., n, d, p, q). In this situation the detected
RSA key buffers covers all used large integers.

6.3 Effectiveness of Insecure Key Detection

After pinpointing the crypto keys, K-HUNT uses the key tracking
Pintool to identify insecure keys: deterministically generated keys
(DGK), insecurely negotiated keys (INK), and recoverable keys (RK).
Table 3 summarizes the detection results. Among the 25 tested
programs, 22 contain at least one insecure key. Only three (Botan,
Crypto++, PSCP) do not have any insecure crypto keys. Overall,
K-HunT finds 25 insecure keys in 8 libraries and 14 applications.
Thus, insecure keys occur not only in applications using crypto
operations, but also in well-established crypto libraries.

The most common class of identified insecure keys are recover-
able keys. K-HUNT found 21 recoverable keys in 8 libraries and 13
applications. K-HUNT also found two deterministic keys (each in
a separate application) and two insecurely negotiated keys (each
in a separate application as well). In the following, we detail the
detection of each class of insecure keys.
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RK
[ RKPS | RKPH

l
Target ‘ DGK ‘ INK [ NMZ | MMZ

Botan
Crypto++ - - - -
Libgerypt - - - v
LibSodium - -

LibTomerypt
Nettle
GnuTLS
mbedTLS
OpenSSL - - -
WolfSSL - - v
7-zip - - - - v
Cerypt - - - -

Cryptcat -
Cryptochief v
Enpass -
Imagine -
IpMsg - v
Keepass - -
MuPDF
PSCP

Sage - -
UltraSurf - v
WannaCry - -
Wget - - - - -
WinRAR - - - - - v

SENENN

ENENEY

NN

N N N N

Table 3: Results of the detected insecure keys in the tested
benchmarks.

(I) Detecting DGK. Since the key generation process is not man-
aged by the crypto libraries, we excluded the libraries from the
detection of deterministically generated keys, and only evaluated
the 15 applications. Among the 15 applications, K-HUNT identi-
fied deterministically generated keys in two: Cryptochief that uses
a proprietary stream cipher and Imagine that uses a close-source
implementation of DSA-1024.

The first case of DGK is in the Imagine picture browser software,
which uses a digital signature to verify whether a user provided
license code is valid. K-HuNT identified five crypto key buffers.
Those buffers had only deterministic taint tag, which indicated a
deterministic key is used. We then conducted a manual analysis of
the application and found a very complex crypto flaw: the program
uses an incorrect DSA signature verification to check the license
code, which leads to the exposure of private key. Such an insecure
key management has actually been leveraged to break the ECDSA
digital signature of Sony Play Station 3 [42].

In particular, a DSA cipher contains five large integers: p, g, g as
fixed parameters (which are public known), x as the private key
(which should never be leaked), and k as a random factor (which
should be a random secret). It generates a public key y = g* mod p.
To use DSA for digital signature, it has to go through the following
two processes.

e Signature Generation. To sign a message m, the DSA cipher
computes the signature as a pair (r, s) with a cryptographic hash
function H (e.g., SHA-256) through equation (1) and (2), and
then distribute r and s to the receiver.

r= gk mod p mod q (1)
s=kY(H(m)+x-r) mod q ()

e Signature Verification. The receiver then verifies the signa-
ture (r, s) with the public knowledge of p, q, g, y and H(m) to
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verify whether the signature is valid if v, calculated using the
following equation from (3) to (6), equals to r.

w=s"1mod q ®3)

uy = H(m) - w mod q 4)

uz =r-wmod q (5)

v =(g"" - y** mod p) mod q (6)

Through manual reverse-engineering, we noticed that the five
detected key buffers correspond to the publicly known parameters
P, g, g, y, and the random secret factor k. Thus, Imagine actually
leaks the random secret factor k by hard-coding it in the software.
A further reverse engineering of the license registration process
of Imagine reveals that this software only tells the user s without
passing r, when a user provides a message m to generate its digital
signature. However, the signature verification requires r in equa-
tion (5). Therefore, the software then locally computes r by using
equation (1) through a hard-coded k. Unfortunately, the exposure
of k is a severe mistake for DSA digital signature. Specifically, if an
attacker has obtained a legal pair of (7, s), with the leaked k, it can
then compute the private key x with the following equation:

x =r Yk -s—H(m)) mod g ™)
As such, an attacker is able to forge any other legitimate digital
signatures with the private key x. We have informed the developer
of Imagine, and this vulnerability has been confirmed and the patch
is still under development as the time of this writing.

The second case of deterministically generated key was found in
Cryptochief, a file encryption tool?. This program accepts two files
as inputs: one is a key file and the other is a plaintext file. It then
outputs an encrypted file. The lengths of the key and plaintext files
are both arbitrary, while the length of the encrypted file is equal to
that of the plaintext file.

We used K-HUNT to monitor the encryption process of Cryp-
tochief. Interestingly, K-HUNT pinpointed that the key buffer has
only 8 bytes, and this key buffer is composed from three local input
sources. The IL for each input source is only one byte. Therefore,
this key buffer has only three bytes IL. This indicates that the key
buffer only acquires at most 24-bits of information from the local
input. As such, an attacker can easily brute force all the possible
keys with just 224 possibilities to decrypt any ciphertext without
the key file. Our further analysis with program source code reveals
that the key derivation function of Cryptochief only uses the head
byte, the tail byte and the count of all bytes of the key file data to
generate an 8-byte key buffer.

(IT) Detecting INK. In secure key agreement protocols, the shared
key should be influenced by all participants. As a result, when K-
HuNT reveals that a shared key is generated with non-deterministic
inputs, it further checks whether the non-deterministic inputs come
from different parties. In our experiments we only consider the
client-server model, which involves two participants. Of the five

2Cryptochief was first mentioned by Bruce Schneier in his blog article [62] in 2006.
The source code of this program is released [20] after the Hack.lu 2014 CTF contest.
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crypto protocols in Cryptcat, Wget, UltraSurf, IpMsg, and PSCP, two
protocols in Ultrasurf and IpMsg use insecurely negotiated keys.
Both programs generate session keys locally and the server just
accepts the key from the client.

More specifically, in the case of IpMsg that adopts a message en-
cryption with RSA-2048 and AES-256, although K-HUNT does not iden-
tify the used RSA key, it does discovers that the AES key is selected
locally (the key is generated using the Windows CryptGenRandom
API). Actually, it is a common mistake to conduct a session key
exchange if the client encrypts the session key with a deterministic
server RSA public key (and then sends it to the server). This not only
brings the issue that the session can be controlled by a malicious
or tampered client, but also hinders the server to authenticate the
client since every attacker could forge the identity through using
the public key.

(III) Detecting RK. We investigated the root cause of recoverable
keys in both libraries and applications by analyzing the source code,
or reverse-engineering the program’s binary when the source was
not available. The recoverable keys are split into four subclasses in
Table 3, two that affect crypto libraries and two that affect applica-
tions. These subclasses are explained below.

RK in Crypto Libraries. Recoverable keys are due to the lack of
crypto key buffer sanitization. In particular, we found four libraries
(Libsodium, LibTomcrypt, Nettle, WolfSSL) that do not zero out the
crypto key buffer, which we term No-Memory-Zeroing (NMZ). For
instance, in Nettle and WolfSSL, the library developers do not provide
any scrubbing functions. For LibTomcrypt, the scrubbing function
provided by the library developers is implemented as an empty
function. An unintentional case happens in Libsodium. Although
it provides a sodium_memzero scrubbing function to clean most of
its key buffer, Libsodium ignores the round key extension in its AES
implementation (utilizing AES NI hardware feature): the round key
buffer on the stack is not cleaned and thus could be leaked. We
have reported this recoverable key to the developers, and they have
patched this issue.

We also found four libraries that use what we term Manual-
Memory-Zeroing (MMZ), in which a scrubbing function is provided
to clean the key buffer. For instance, mbedTLS uses mbedtls_aes_
free to zero the key; GnuTLS uses zeroize_temp_key in wrap_
nettle_cipher_close to zero the key; and Libgerypt uses gery_
cipher_close to zero the key. However, a major problem for MMZ
is that it does not clean the sensitive data automatically and it may
leave the crypto key in memory if the scrubbing function is not
invoked.

RK in Crypto Applications. We identify two common root causes
for recoverable keys in crypto applications. We term the first RK in
Program Heap (RKPH). In this category crypto key buffers are freed
without having been sanitized after the crypto operation completes.
There are 4 applications with insecure crypto keys in this category.
Among those applications, Ccrypt, Cryptcat, and WinRAR, all have
been developed for more than 10 years, but they are still vulnerable
to the crypto key buffer sanitization issue.

We term the second RK in Program Stack (RKPS). A crypto key
buffer can also be placed in the stack and developers often ignore
the sanitization of stack variables. This recoverable key category
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affects 9 applications: 7-zip, Enpass, IpMsg, KeePass, MuPDF, Sage,
UltraSurf, Wannacry, and Wget. Interestingly, this issue helps the
forensic analysis of the ransomware families Sage and Wannacry. In
particular, since they place the encryption keys in the stack and do
not clean them, it is possible for an analyst to retrieve the key from
the stack memory, similarly to the heap crypto key identification
case in the RSA private key extraction of Wannacry (which affects a
Windows XP crypto library that we do not analyze) [45].

6.4 Performance Overhead

As described in §5, K-HUNT includes three Pintools: code profiling,
randomness testing, and key tracking. To evaluate the performance
overhead of these Pintools, we selected four command-line crypto
applications and two representative crypto libraries. We report the
performance overhead of the three Pintools compared to null PIN
by running the 6 selected programs 10 times each. As shown in
Figure 3, on average the performance overhead of code profiling
is 2.1 times, 5.7 times for randomness testing, and 7.6 times for
key tracking. We observe that the overhead is larger for programs
with complex data transformation (e.g., 7-zip), asymmetric ciphers
(e.g., RSA), and digital signatures (e.g., ECDSA). Nonetheless, the
performance overhead is reasonable for most programs tested by
K-HunT.

7 LIMITATIONS AND FUTURE WORK

K-HuNT has a number of limitations. First, while K-HuNT is able to
pinpoint the insecure keys, it does not report any specific crypto al-
gorithms (e.g,. AES, DSA) to which the insecure key belongs. In fact,
K-HunT has all the building blocks to support the identification of
each specific crypto algorithm used by an binary executable. More
specifically, since K-HUNT has identified the data bundles of key
buffer K, ciphertext C, and plaintext P, we can actually perform
a brute force search of the encryption algorithm E by computing
whether C = E(K, P), where E are those well-known crypto algo-
rithms. Certainly, this is only possible when software uses standard
crypto algorithms (e.g., if they follow the never-implement-your-
own-crypto practice [29, 61]). We leave the identification of specific
crypto algorithms in a binary executable as one of our future efforts.

Second, K-HUNT performs the taint propagation at the function
level. That is, if a function uses a tainted tag, all the data defined
in that function will have that tainted tag. Such taint propagation
may overly propagate the tainted tag, making insecure keys appear
secure. For instance, it might be possible that a function uses a ran-
dom function, but the return value of the random function is never
assigned to the crypto key. While we have not encountered such a
case, we plan to address this issue by implementing a fine-grained
taint propagation policy, and meanwhile address the performance
issues caused from this policy.

Finally, K-HunT will not be able to detect the crypto keys if they
are stored in CPU registers. A particular case is the secure in-cache
execution [34, 44] technique against the cold-boot attack [46]. In
this case the crypto key is never evicted to memory and thus our
approach is not able to detect it.

There are also other possible extensions of K-HUNT. For instance,
crypto operations are increasingly used by mobile apps to protect
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their sensitive data. Thus, extending K-HUNT to detect insecure
keys in mobile apps is a logical next step.

8 RELATED WORK

Crypto Key Identification. There has been significant interests
of identifying crypto keys. For instance, Shamir et al. presented an
efficient algebraic attack which can locate the secret RSA keys in
long bit strings, and more general statistical attacks which can find
arbitrary crypto keys embedded in large programs [64]. Halderman
et al. proposed the cold-boot attack [46] to retrieve the crypto keys
from physical memory of the device. Hargreaves et al. presented a
linear scan method to recover encryption keys from memory [47].
Maartmann et al. discussed the forensic identification and extraction
of crypto keys [57]. However, those approaches focus on identifying
a key with its mathematic structure and do not consider utilizing
dynamic program analysis to discover the used key, whereas K-
Hunr fully utilizes dynamic program execution information such as
the number of basic block execution and data entropy/randomness
to identify the crypto key. Moreover, K-HUNT makes a step even
further by using the dynamic taint analysis to detect the insecure
crypto keys, which is less concerned by previous key identification
studies.

Crypto Primitive Identification. A number of efforts have fo-
cused on identifying the crypto primitives from various aspects
(e.g., [33, 43, 54, 58, 70]). However, archiving efficient and accurate
crypto primitive identification is still a non-trivial task. There are
still many open challenges needed to be addressed. Recent results
indicate that data flow analysis [52, 53] is a promising technique
to help identify crypto algorithms. One major problem of state-of-
the-art crypto primitive identification techniques is that they are
sensitive to function boundary and parameter recognition. Existing
techniques (e.g., CryptoHunt [68]) require the boundary of crypto
function to be identified accurately to recognize crypto function.

Crypto Misuse Detection. Public awareness of crypto flaw is
growing and the increased awareness has resulted in an increase
of efforts to detect crypto misuses [37, 50, 55]. Over the past a few
years, many crypto misuse cases in mobile apps and firmwares
(e.g., [35, 39]) have been discovered. For commodity software, some
crypto misuses for popular software products are also discovered [36,
37,41, 67]. Recently, TaintCrypt [60] proposed the concept of cryp-
tographic program analysis to help developers detect the crypto
misuse using LLVM-based static source code analysis. However, it
requires the source code to conduct the analysis. K-HUNT comple-
ments the existing crypto misuse detection approach by exclusively
focusing on identifying the insecure crypto keys from binary exe-
cutables.

Comparison. Clearly we are not the first to look into the security
issues of crypto code, and there are a number of closely related
works that focus on identifying the crypto primitives, as shown
in Table 4. In particular, among the compared systems, Kerckhoffs,
Aligot, Crypto-DFG, and Cryptohunt require the pre-defined templates
to identify crypto algorithms. Therefore, they cannot detect propri-
etary ciphers. ReFormat, Dispatcher, and MovieStealer are not specif-
ically designed for crypto primitive identification, and thus they
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C2: Obfuscation resilient

C4: Detecting stream key cipher
Cé6: Detecting proprietary cipher
C8: Detecting insecure key

C1: No need of crypto template
C3: Detecting block cipher
C5: Detecting public-key cipher
C7: Identifying crypto key

Table 4: Comparison with the closely related works.

cannot identify the crypto keys. Only CipherXRay and K-HUNT can
identify both proprietary ciphers and crypto keys, but CipherXRay
did not make any attempt to identify the insecure keys. Moreover,
a substantial difference between K-HUNT and CipherXRay is that K-
HunT focuses on the core part of a crypto algorithm and identifies
keys from only several crypto blocks. In contrast, CipherXRay needs
to recover both input and output parameters of the entire crypto
algorithm. Thus it still suffers from the issue of how to accurately
identify the boundary of parameter buffers and faces both false
positives and false negatives [51].

An important requirement for the crypto identification is that
the analysis should not affect the normal execution of the pro-
gram. ReFormat, Dispatcher, MovieStealer, and our K-HUNT utilize
lightweight heuristics, which do not impose much overhead to the
normal execution. Kerckhoffs, Cryptohunt and Aligot use an offline
analysis strategy. Crypto-DFG performs a purely static Data Flow
Graph (DFG) isomorphism based detection and thus does not af-
fect the execution either. Only CipherXRay adopts a heavyweight
dynamic taint analysis and may affect the execution. For instance,
it takes CipherXRay about 40 minutes to recover a 1024-bit RSA
private key, which is unacceptable for establishing normal network
connection.

We also compared the accuracy of each system. We found that
if the approach requires a very precise criteria to judge the crypto
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function, it yields false negative. For instance, Kerckhoffs uses I/O
comparison with known cryptographic functions to identify spe-
cific ciphers. However, this comparison is very sensitive to the
implementation variation. Moreover, we also found that only us-
ing one heuristic feature to detect crypto algorithm is often not
accurate. Dispatcher, for example, has both false positives and false
negatives [43, 58]. Another case is CipherXRay, which only checks
whether all bits of the output buffer are affected by each bit of the
input buffer. For the cryptographic avalanche effect, however, the
criteria becomes if one bit of the input buffer is flipped, the output
buffer changes significantly (e.g., half the output bits flip). As a
result, CipherXRay does not check the intrinsic properties of the
avalanche effect and may suffer from false positives. In contrast,
K-HunT focuses on the intrinsic properties of crypto operations,
does not require any templates or signatures, and is thus crypto
implementation agnostic.

Finally, since binary executables can be obfuscated, the identifica-
tion of crypto primitives must also consider the code obfuscations.
Among the compared systems, Dispatcher, ReFormat, and Crypto-DFG
can be easily cheated by changing the instructions with alternatives
and thus are not obfuscation-resilient. For obfuscation-resilient sys-
tems such as Kerckhoffs, Aligot, CipherXRay, and Cryptohunt, they
are based on semantics of crypto. For K-HUNT, it utilizes the fact
that even if the crypto basic blocks are obfuscated, e.g., certain
arithmetic instructions are replaced by other equivalent arithmetic
instructions, the runtime features of execution number and high
entropy/randomness cannot be removed. Therefore, K-HUNT can
still work against obfuscated crypto code.

9 CONCLUSION

We have presented K-HUNT, a dynamic analysis system to identify
insecure keys in an input executable. K-HUNT first pinpoints the
crypto keys by leveraging general properties of crypto operations.
Then, it identifies insecure keys, namely, deterministic generated
keys, insecurely negotiated keys, and recoverable keys by tracking
how the crypto keys are generated and propagated. We have imple-
mented K-HUNT and tested it with 10 cryptographic libraries and 15
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applications that contain crypto operations. Our evaluation results
show that K-HUNT pinpoints the crypto keys used by symmetric
ciphers, asymmetric ciphers, stream ciphers, and digital signatures.
More importantly, K-HuNT discovers insecure keys in 22 out of 25
evaluated programs, including in well-established crypto libraries
such as LibSodium, Nettle, TomCrypt, and WolfSSL. We have responsi-
bly disclosed the vulnerabilities to the affected software vendors
and patches are under development.

10 AVAILABILITY

The source code of K-HUNT and also the tested benchmark will be
made public available at https://github.com/gossip-sjtu/k-hunt/.
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