
APPCOMMUNE: Automated Third-Party Libraries
De-duplicating and Updating for Android Apps

Bodong Li, Yuanyuan Zhang, Juanru Li, Runhan Feng, Dawu Gu
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
Shanghai, China

{uchihal, yyjess, jarod, fengrunhan, dwgu}@sjtu.edu.cn

Abstract—The increasing usage of third-party libraries in
Android apps is double-edged, boosting the development but
introducing extra code base and potential vulnerabilities. Unlike
desktop operating systems, Android does not support the sharing
of third-party libraries between different apps. Thus both the de-
duplicating and the updating of those libraries are difficult to be
managed in a unified way.

In this paper, we propose a third-party library sharing method
to address the issues of code bloating and obsolete code updating.
Our approach separates all integrated third-party libraries from
app code and makes them still accessible through a dynamic load-
ing mechanism. The separated libraries are managed centrally
and can be shared by different apps. This not only saves the
storage but also guarantees a prompt update of outdated libraries
for every app. We implement APPCOMMUNE, a novel app
installation and execution infrastructure to support the proposed
third-party library sharing without modifying the commodity
Android system. Our experiments with 212 popular third-party
libraries and 502 real-world Android apps demonstrate the
feasibility and efficiency: all apps work stably with our library
sharing model, and 11.1% storage and bandwidth are saved for
app downloading and installation. In addition, APPCOMMUNE
updates 86.4% of the managed third-party libraries (with 44.6%
to the latest versions).

Index Terms—Android, Third-party Libraries, Code Updating

I. INTRODUCTION

Mobile app development involves a wide variety of third-
party libraries. Different apps often rely on a small set of
popular third-party libraries to fulfill similar functions. Al-
though leading mobile operating systems (Android and iOS)
do inherit library sharing mechanisms from desktop operating
systems (Linux and Mac OS), only a limited number of system
provided libraries are shared and user apps could neither add
nor update them. As a result, mobile apps have to statically
integrate all used third-party libraries.

The individual integration of third-party library brings many
issues to the mobile ecosystem. First, it is very difficult to
update the used third-party libraries in all apps. Actually,
according to the survey conducted by Erik et al. [1], developers
fail to update a third-party library due to a variety of reasons
such as incompatibility issue, update unawareness, or actively
ignoring the new version. Thus a large portion of third-party
libraries are outdated even if the host apps are updated to the
latest version [2] [3] [1]. Second, the individually downloaded

and stored third-party libraries consume a huge amount of
both network traffic and local storage space. In fact, third-
party library repetition is very common for popular mobile
apps. If the duplicated third-party libraries are not repeatedly
downloaded and stored, app markets and mobile devices can
both benefit from this de-duplicating.

Existing studies of third-party library management on mo-
bile platform often focus on the permission control. Several
approaches [4] [5] [6] [7] are proposed to restrict the potential
harmful behaviors and unnecessary permissions of third-party
libraries. Other approaches [8] radically remove the malicious
libraries from the repacked apps. Despite all those efforts,
mobile platforms still lack an effective mechanism to both
reduce library repetition and help the updating of obsolete
libraries.

To help developers and mobile devices manage third-party
libraries, in this paper we propose a library sharing strategy
for Android apps. Our strategy helps Android apps share third-
party libraries without the modification of the commodity
Android system. To fulfill this, all third-party libraries are first
separated from an app. Then the separated app and libraries
are respectively downloaded and installed. To reduce library
repetition and promote library updating, third-party libraries
are stored and managed in a centralized way and hence apps
do not need to update the used libraries individually.

We implement APPCOMMUNE, a novel app installation
and execution infrastructure to support our third-party library
sharing strategy. Multiple apps on the same device with the
support of APPCOMMUNE would share the same third-party
library, which saves both the bandwidth and the storage.
APPCOMMUNE consists of a Market Proxy on the server
side and a Lib Manager on the client side. The Market Proxy
automatically separates all third-party libraries from an app to
generate a tailored app, and then rewrites both the tailored
app and third-party libraries for a later dynamic loading based
execution. If a user wants to install this app, she will download
the tailored version and install it. After that, the Lib Manager
will automatically check and download necessary third-party
libraries for this app.

APPCOMMUNE introduces novel app trimming and rewrit-
ing techniques to support library sharing without modifying
the commodity Android system. This allows the tailored apps

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
Research Papers

344

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

to dynamically load the shared third-party libraries. Moreover,
on the premise of stability, APPCOMMUNE automatically
adapts the proper library version (often the new version) for the
tailored app to promote the library updating and thus reduce
security threat of the vulnerability in third-party libraries.
To validate the effectiveness, we tested APPCOMMUNE with
212 popular third-party libraries and 502 real-world Android
apps on 10 different Android devices. The result showed that
all tailored apps worked normally under our library sharing
model with almost no performance overhead. In addition,
APPCOMMUNE saved 11.1% storage and bandwidth usage for
the downloading and installing of those apps, and updated
86.4% of the used third-party libraries for the tested apps
(44.6% to the latest version). With a vulnerability detection
against five publicly released security vulnerabilities related
to third-party libraries, APPCOMMUNE successfully protected
all 31 influenced apps through the library updating.

In summary, this paper makes the following contributions:

• We propose a third-party library sharing strategy in An-
droid system to tackle the bloated and obsolete third-party
libraries. To the best of our knowledge, our solution is
the first one to address the updating of outdated Android
third-party libraries without modifying the system.

• We implement APPCOMMUNE, app installation and ex-
ecution infrastructure to support our library sharing
strategy. APPCOMMUNE introduces app trimming and
rewriting techniques to help apps use shared third-party
libraries, and conducts comprehensive updating test to
adapt apps with proper versions of libraries.

• The experiments with popular Android apps and third-
party libraries demonstrate that the deployment of APP-
COMMUNE on commodity Android devices is expected
to reduce the expense of data transmitting and storing,
and enhance the security of the ecosystem.

II. MOTIVATION

A. Problems

Although third-party library simplifies the app develop-
ment, it brings two issues: duplicate libraries lead to the
bloating of app size, and outdated libraries contain potential
vulnerabilities. Here we give a concrete example with two
apps to describe these issues in detail. As Figure 1 shows,
two apps (Noogra Nuts1 and MAPS.ME2) contain 17 and
11 third-party libraries respectively. Among those integrated
third-party libraries, six libraries are shared by both apps. If a
user installs both those two apps on the same mobile device,
these six libraries are downloaded repeatedly within different
apps. Obviously, this consumes more network traffic and flash
storage. Furthermore, we notice that most libraries of Noogra
Nuts are in older versions compared with MAPS.ME. The use
of outdated third-party library is insecure. For instance, the
specific version of Facebook library (version 3.15) used in

1Noogra Nuts is a popular game app [9].
2MAPS.ME is an open-source offline maps app [10].

Facebook*
V3.15

FlurryAnalytics*
V3.4.0

Google Play Services
V6.5.87

Gson
V2.6

Parse
V1.5

Android Support
V21.0.3

AppBrain

OkHttp*

SimpleDialog

Applovin

libGDX

Lonic

Ironsource

Startapp

Thumzap

AndEngine

Apache.cordova*

3rd-party libraries in
Noogra Nuts

Facebook
V4.10.0

FlurryAnalytics
V6.0.0

Google Play Services
V8.4

Gson
V2.6

Parse
V1.5

Android Support
V23.1

Bolts

Soarcn.Bottomsheet

Mopub*

Biodranik.Alohalytics

Mail.ru

3rd-party libraries in
MAPS.ME

* vulnerable version

Total 7.2MB

Total 5.41MB

Fig. 1. Two apps contain six same third-party libraries, some libraries are
even vulnerable.

Noogra Nuts contains at least three security vulnerabilities
according to Facebook’s official specifications [11].

B. Approach and Challenges

To address the issues of third-party library, we propose a
third-party library sharing strategy to reduce library repeti-
tion and promote library updating. In general, our strategy
separates all third-party libraries from an app before it is
downloaded and installed. Then, the traditional app installation
process is divided into two individual processes: an installation
of a tailored app (app without any third-party libraries),
and an installation of necessary third-party libraries. On the
premise of stability, only a few (one or two) secure and stable
versions of certain third-party library (often the latest version)
is required to be installed on the device and shared by multiple
apps. In this manner, third-party libraries are managed in a
centralized way and two advantages–library de-duplicating
and library updating, can be easily achieved.

Nevertheless, there exist many challenges for a stable and
efficient library sharing mechanism:

How to separate third-party libraries from an app: Android
system supports two kinds of libraries: java library (.jar)
and native library (.so). Within an apk file, native libraries
are stored independently in /libs directory, while the java
libraries and the original app code are compiled together into
a compact Dalvik Executable (dex) file. The challenge here
is how to identify and split the integrated third-party java

345

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

public interface FacebookCallback {
 void onSuccess(Object arg1);
}

(a) declaration in library code

public class FacebookCallbackAdapter implements FacebookCallback {
 public void onSuccess(Object arg1) {
 ...
 }
}

(b) implementation in app code

Fig. 2. The figure shows an example of interface-typed API, which is not
suitable for dynamic loading.

libraries from the dex file and still keep the code of main
functionalities.

How to share third-party libraries between different apps:
Originally, third-party libraries are not designed for app shar-
ing, and an app also does not support the API invoking of
shared third-party libraries outside its own sandbox. In order
to enable such mechanism, a series of app and library rewriting
measures must be provided. Since third-party libraries are
removed from the original app, the API invoking of those li-
braries should adopt a new pattern. That requires the rewriting
of all instructions related to third-party library API invoking.
Moreover, app often utilizes a dynamic loading mechanism to
invoke a shared library other than a statically integrated library.
However, not all kinds of API invoking can be rewritten with
a dynamic loading.

As shown in Figure 2, the interface-typed
FacebookCallback API is implemented directly by
FacebookCallbackAdapter. This interface must be
initialized before the implementation, so it is not allowed to
be loaded afterwards through a dynamic loading.

How to handle API changes among different versions of
third-party libraries: The updating of third-party libraries
should also concern about the API compatibility issue. If the
new version of library changes too much compared to the old
one, the updating may affect the normal functionalities of the
app. So the updating not only should consider the accuracy of
third-party library identification, but should also consider how
to choose a proper version of the library to adapt the app.

C. Insights

To address the three challenges mentioned above, we pro-
pose the following key techniques to help implement third-
party sharing on commodity Android devices:

Third-party Library Identifying and Separating: The sepa-
rating of third-party libraries requires an exact identification,
we need to identify each library and even its exact version. To
implement this, we utilize class hierarchy as the core feature
to identify used third-party libraries. It’s independent of the
detailed class names or method names, so we can effectively

FacebookSdk.sdkInitialize(context);

(a) direct invocation

DexClassLoader loader = new DexClassLoader(dexpath, ...);
class clz = loader.loadClass("com.facebook.FacebookSdk");
Method mth = clz.getDeclaredMethod("sdkInitialize",Context.class);

mth.invoke(clz,context);

(b) reflective invocation

Fig. 3. A comparison between two kinds of invocations

resist most layout obfuscations (which is the most common
kind of code obfuscations in Android). Then we disassemble
an app and utilize the collected features to match the integrated
third-party libraries in it. After the identification, we remove
all code of third-party libraries for a further tailored app
rebuilding.

Rewriting of App and Third-party Library: In our third-party
library sharing scenario, both (tailored) apps and third-party li-
braries are rewritten to adjust the execution model. As Figure 3
shows, the reflective invocation is much more complex than the
direct invocation. Therefore, we do not directly change each
API invocation into java reflective mode. Instead, we first add a
wrapper for each API of a third-party library. Then we rewrite
the app to add declarations of all wrappers into the app. In
addition, we insert a wrapper initializer that dynamically loads
modified third-party libraries and obtains the list of wrappers
through java reflection before the execution of the app. Finally,
we replace each invoking instruction of third-party library API
with an invoking instruction of the corresponding wrapper.
In this way, the patching of original invoking instructions is
significantly simplified.

Specially, we would automatically check all reflection re-
lated methods in app code. If any API is originally invoked
by java reflection, we can directly change the invocation
target to corresponding wrapper. Therefore, original reflective
invocation is not our obstacle.

Library Updating and Version Adapting: To guarantee the
stability of app execution, here we adopt a conservative
updating strategy. We divide the update of library into three
types according to the study of Erik et al. [1]. A major
change indicates that backwards incompatible API changes
or additions are added. A minor change indicates that the
changes or additions are backwards compatible. A patch
change indicates that there are only bug fixes or code-only
changes that do not affect APIs. For an app which contains
an outdated library, only when the used APIs contain no
major changes between the new version and the old one, the
updating would be adapted. According to this principle, we
try to update the third-party libraries to new versions. In this
way, there would be more than one versions of certain library
installed in the same device (according to the detailed installed

346

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

Tailored
App 1

Customized
Library 1

Lib Manager

Tailored
App 2

Client Side

Customized
Library 2

Customized
Library 3

...

...

Server Side

App

App
Code

3rd-party
Library

Library’

Tailored
App

Customized
Library

App Trimming

Conservative
Updating

App Rewriting

Library
Rewriting

App
Downloading

Library
Downloading

Market Proxy

App
Developer

3rd-party Library
Developer

Lib Official Web,
Github,

. . .

App Upload

Library Collection

Fig. 4. An overview of APPCOMMUNE

apps). Some apps share the latest version and others share an
older version. Although we don’t maximize the library de-
duplicating, it can also effectively save the space and ensure
the stability simultaneously.

III. APPCOMMUNE

A. Overview

We propose APPCOMMUNE as a new Android app market
model to achieve our third-party library sharing strategy.
Figure 4 depicts the architecture of APPCOMMUNE. On the
server side (i.e., app market) , APPCOMMUNE introduces a
Market Proxy to trim an app and update the third-party
libraries. The updated libraries and the tailored apps will be
sent to devices of end-users respectively. On the client side
(i.e., local device), APPCOMMUNE introduces a Lib Manager
to manage third-party libraries in a centralized manner and
stitches those tailored apps with libraries of proper version.

When APPCOMMUNE is deployed, it first collects most
mainstream third-party library SDKs. These third-party li-
braries are collected from network resource or uploaded by
third-party library developers. After the collection of libraries,
APPCOMMUNE starts to serve as a normal app market. App
developers can upload their apps to the server side. Moreover,
APPCOMMUNE would requests app developers to help re-sign
the tailored apps since it needs to repack each app on the server
side.

On the server side, the Market Proxy performs three main
tasks: 1) It trims all identified third-party libraries in an app
and rebuilds the rest part as a tailored app; 2) According to the
detailed used APIs, it determines whether a library should be
updated and the proper version. 3) It patches the corresponding
collected library with proper version to add a wrapper layer
for tailored apps to invoke. As a result, the tailored apps and
customized libraries are ready to be downloaded.

On the client side, the Lib Manager helps build an execution
environment for tailored apps. When an end user downloads
an app, the Market Proxy handles the request and provides
the tailored app instead of the original one. At the same time,
the Lib Manager automatically checks local environment and

Lib SDK

API
Document

Lib
Analyzer

Lib Profile

DEX

Resource
Files

Dex
Processor

App

Tailored
Dex

Native
 Lib

Java Lib

Fig. 5. App trimming: both native and java libraries are identified and
separated from the original app.

downloads necessary third-party libraries. The downloaded
libraries are individually stored on the device, and tailored
apps then invoke these libraries through a dynamic loading
mechanism.

APPCOMMUNE reduces the consuming of both network
traffic and local storage through this sharing mechanism.
In this way, the same library file will not be downloaded
repeatedly. And through a centralized management of third-
party libraries, APPCOMMUNE could immediately update the
library and avoid the security threats due to the use of outdated
libraries.

B. App Trimming

To achieve a centralized management of third-party li-
braries, we need to separate the integrated third-party libraries
out from app. Figure 5 depicts the process of app trimming.
There are two types of third-party libraries: java library (.jar

347

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

or .aar3) and native library (.so). We can directly extract
native libraries because they are individually stored in an
apk file. For each java library, we generate a library profile.
According to this library profile, we identify the library code
from the dex file then cut it off. At last, we find and adjust
all library API invocation points in app code and generate a
tailored dex file.

1) Library Profiling: We generate the profile of library by
utilizing the open-source project LibScout [12], which selects
class hierarchy as the base feature to generate the profile which
is capable of identifying library and even pinpointing the
exact library version. Considering that LibScout is originally
designed for library identification, we further extend its imple-
mentation to make it suitable for app trimming and further app
rewriting. In details, we add API statistics as another feature
into the profile which helps us to locate the used APIs in
app code. The API statistics include each API’s parameter
type, return value type, and the class hierarchy it belongs to.
It contains no detailed class or method names (all user-defined
names are marked as unified symbol), so it can still resist most
code obfuscations.

2) Library Separating: By matching the dex file with all
library profiles generated before, we can determine the detailed
integrated libraries in the target app. Then, we decompile the
dex file into smali [13] files, and resect the library code
according to the class hierarchy of matched profile.

3) Invocation Points Patching: Finally, we utilize the API
statistics in each matched library profile to locate library API
invocation points in remained smali code (app code). We will
modify these invocation points later in app rewriting (Section
III-D).

C. Library Updating and Version Adapting

After app trimming, we abandon all integrated third-party
libraries. Then we need to prepare the libraries with proper ver-
sions to match the trimmed app. As mentioned in Section II-C
(insight c), we adopt a conservative updating strategy. On the
premise of stability, we try to update them to latest versions
as far as possible.

• For each detected library in a target app, if a new version
is available, we first need to determine which APIs of this
library are actually used in app code. We have obtained
this information while app trimming as mentioned in
Section III-B.

• Then we need to compare the new APIs provided by new
version library and the ones used in app code. According
to the detailed change types of APIs, we determine the
compatibility between app and the new version library.

• If a major change exists in one of the used APIs, the
update will not be accepted. Only when all used APIs
have the same signatures with the ones provided by
new library, we regard the new library compatible. Here
we compare the new library with app code instead of

3.aar combines .jar and resource files. In our work, we don’t deal with
any resource file, and we would transform .aar into .jar directly. For
convenience, we collectively call .aar and .jar as java library.

Lib Profile

Lib Code

Customized
Library

IIL

Patched
Code

Resource
Files

Tailored App

IDL

Entry

Java Lib

Tailored
Dex

Dex

dx

Dex

Fig. 6. App and library rewriting: dex files of both apps and libraries should
be rewritten to add extra patching code.

old library, because only actually used APIs impact the
compatibility. Even if there is a major change between
two versions of library, it’s still updatable as long as the
major change isn’t used by app code.

• Normally a minor change or patch change will not affect
the compatibility. Considering special cases, we maintain
a database for each API change on the server side. If any
minor change or patch change causes any exception in
subsequent tests, it will be recorded as a major change
and will not be updated afterwards. For the library that
cannot be updated to the latest version, we use a relatively
new and suitable version instead and notify the app
developer to update its code as soon as possible.

D. App and Library Rewriting

To help tailored app access these separated matched li-
braries, we need rewrite both the app and these libraries.

To make external native library accessible, we rewrite the
app code related to native library loading. Android system
provides two system APIs for developers to load a native
library: System.loadLibrary can only load a library from
app’s sandbox or system library path, while System.load

can load any library according to the path parameter. Thus
we replace the System.loadLibrary with System.load

in app code, and change the parameter of System.load into
the corresponding native library in Lib Manager.

For java library, our strategy is to replace the direct invoking
to dynamic indirect invoking. As Figure 6 shows, we first
use android platform tool dx to transform java library into
dex code. Then, we add three pieces of extra code: Interface

348

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

Implementation Layer (IIL) in customized library, Interface
Declaration Layer (IDL), and Entry in tailored app. According
to the API statistics in library profile, we re-encapsulate all
library’s APIs into wrapper APIs which are declared in IDL
and implemented in IIL. Entry, which will be invoked just
when app starts, is responsible for loading the customized
library and initializing an IIL instance. This instance is used
to invoke the wrapper APIs directly. In the next, we patch all
invocation points to invoke wrapper APIs. At last, we combine
IIL and library code into a customized library dex file. And
we combine IDL, Entry and the patched dex file into an entire
dex file, which is repacked into tailored app with the original
resource files.

We give a typical example to help illustrate
our patching work: As Figure 7 shows, we re-
encapsulate sdkInitialize (library API) into
com_facebook_Facebook_sdkInitialize (wrapper
API), which is declared in IDL and implemented in IIL. In
Entry, the library dex is loaded (line 02) and an instance
idl is initialized (line 04). Notice that idl is an instance
of IIL (a part of library), but is casted into IDL (a part
of app code) type. Therefore the wrapper APIs, which are
implemented in library code and declared in app code, can
be invoked directly through this instance. In this way, we
centralize the java reflection options in Entry and reduce the
changes made in each invocation point. As Figure 7 shows,
the patched invocation point remains one line code as the
original code.

We summarize the patching details for seven types of APIs
as below:

• static method: Static method can be invoked directly
without any context limitation, therefore it is a common
kind of API. We directly invoke a static method typed
API in the wrapper API. And the wrapper API has the
same parameters and return value as the ones of original
API.

• public method: Compared to static method, a normal
public method’s invocation relies on a context. For normal
public methods, we add an extra parameter into the
wrapper API. The invocation context should be passed
through this extra parameter.
Besides methods, we also need to deal with library’s
objects used in app code.

• public class: Library code may provide a public class
for app developer to use directly. Library’s public classes
would be dynamically loaded, so they can’t be used
directly in app code. If app code declares variables in
type of these public classes, we would switch them into
Object type. Specially, if the parameters of wrapper
APIs are in type of these public classes, they would be
changed into Object as well. These Object typed pa-
rameters would be changed back and passed into original
APIs in IIL.

• public field: Some library classes would provide public
fields for app developer to access. For each public field,
we add two extra public APIs responsible for reading and

writing (get() and set()).
The following cases are not suitable for dynamic loading
and java reflection. We need to treat these APIs as part
of app code.

• public interface: Interface typed class is also a common
type of API (An example is given in Figure 2). It’s a
kind of callback that app code implements the interface
declared by library code. Since some classes in app
code are implemented from it, this interface typed class
must be initialized before these classes in app code.
Therefore, it doesn’t support dynamic loading. We solve
this challenge by adding library’s interface typed class
into IDL. Our IDL is also an interface typed class. We
separate all library’s interface typed classes out and add
them into IDL in patched app. By this way, these APIs
would be loaded together with classes of app code. And
the remained part of library can be dynamically loaded
normally.

• abstract class: An abstract class in library code provides
abstract methods for app code to overload. Like interface
typed class, we add abstract classes into IDL in the same
way. Afterwards as a part of app code, the code in abstract
class would be treated as normal app code. It means that
the library’s methods invoked in an abstract class would
also be treated as library APIs.

• extra component: Some libraries also provide extra An-
droid components (Activity, Broadcast Receiver, Service,
and Provider) and require app developer to declare these
components in manifest.xml. These components,
which have been registered in system, can’t be dynam-
ically loaded either. We also separate these component
classes out from library code and add them into app code.

E. Library Management

1) Downloading: On local device side, a terminal app, Lib
Manager, is pre-installed and is responsible for downloading
and managing customized libraries. APPCOMMUNE follows
the basic mechanism of Android system and Lib Manager
doesn’t request root privilege. At first, the tailored app is
downloaded and installed normally as ordinary ones. Simul-
taneously, Lib Manager judges whether all needed versions
of libraries have been downloaded before. If lack of any
library, Lib Manager would request it from Market Proxy and
store it into the library store on the device (By default the
customized libraries are stored in path /data/local/tmp/).
Normally there would be only the latest version downloaded
on the device for each library. In special cases, some older
versions would be downloaded if some apps are not suiable
for latest versions. The same library of same version would
not be downloaded repeatedly. Specially, for a native library,
there would be several versions for different platforms (e.g.,
arm, x86, etc.). Lib Manager can select the suitable version
according to the device platform.

2) Execution: All customized libraries are set to be read-
able in the whole system. When the tailored app starts to run,
the code of Entry will be executed first. Entry dynamically

349

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

Customized
Facebook Library

Tailored App

01 public class IIL implements IDL{
02 @Override
03 public void com_facebook_FacebookSdk_sdkInitialize(Context arg1){
04 FacebookSdk.sdkInitialize(arg1);
05 }
06 }

01 public interface IDL{
02 public void com_facebook_FacebookSdk_sdkInitialize(Context arg1);
03 }

01 public static IDL idl;
02 DexClassLoader dcl = new DexClassLoader(path, ...);
03 Class iil = dcl.loadclass("com.IIL");
04 idl = (IDL)iil.newInstance();

01 Entry.idl.com_facebook_FacebookSdk_sdkInitialize(this);
Library
Code

IIL

Patched
App Code

IDL

Entry

Fig. 7. A detailed example of our code patching work

loads the corresponding customized java library (dex format)
and initializes the code for further invocations. The native li-
brary is directly accessed by System.load with their absolute
file path. The tailored app only requests the library names, the
detailed versions are decided by Lib Manager according to our
library version adapting results on Market Proxy.

3) Further Updating: The further updates of tailored apps
and customized libraries are also independent. When a new
version of app is available, Lib Manager will notice the user
to download. If a new version of library is available, Market
Proxy will first determine whether it’s compatible with each
app. According to this matching result, all suitable apps are
forced to use the new library. The developers of unsuitable
apps would be notified to update their apps as soon as possible.
Our Market Proxy supports Android smart update [14] to make
the update more lightweight.

IV. EVALUATION

A. Experimental Environment and Dataset

We deploy APPCOMMUNE on a workstation (server side)
and 10 different Android devices (client side) to evaluate its
usability. The workstation is a ThinkCentre with Core i7 @
3.40GHz and 16GB of RAM running Ubuntu 16.04.

The Android devices include Nexus 4, 5, 6, 6P, Samsung
S7, S8, Huawei Honor8, P9, Moto Z, Sony Xperia L and cover
different Android OS from 4.4 to 7.0.

We establish two datasets to help conduct a comprehensive
evaluation against APPCOMMUNE:

• Lib Dataset: To generate library profiles for library
detection, we collect 212 distinct popular third-party
libraries with 3,774 different versions. We download the
latest version of library SDKs along with their historical
versions (if available) from their official website or github
repositories.

• App Dataset: In order to simulate the actual situation as
far as possible, we invite 10 volunteers to provide their
actual app lists (app name and version) in their mobile
phones. According to these app lists, we download the
corresponding apps from Google Play [15] and Tencent
Android Market [16]. Totally we collect 502 apps and
establish 10 app groups to simulate the mobile environ-
ment of each volunteer. The number of each app group
is between 34 and 83.

B. Library Detection

TABLE I
RESULT OF LIBRARY DETECTION

Total Apps 502
Total Detected Library Instances 2,695
Average Libraries in Each App 5.37
Distinct Kinds of Detected Libraries 73
Different Versions of Detected Libraries 623

TABLE II
TOP 10 DETECTED THIRD-PARTY LIBRARIES

LIBRARY NUMBER OF APP RATIO
Gson [17] 225 44.8%
universal-image-loader [18] 99 19.7%
Nine Old Androids [19] 78 15.5%
Apache [20] 69 13.7%
Facebook [21] 63 12.5%
WeChat [22] 58 11.6%
Fresco [23] 57 11.4%
Crashlytics [24] 54 10.8%
OkHttp [25] 51 10.1%
Admob [26] 46 9.2%

We first utilize our extended version of LibScout to gen-
erate library profile for each library SDK. Then, we use the
generated library profiles to identify the integrated libraries in
our collected apps. As Table I shows, from all 502 collected
apps, we totally detect 2,695 third-party library instances
that cover 73 distinct libraries with 623 different versions.
Table II summarizes the top 10 detected third-party libraries
in our dataset. The most frequently used third-party library
is Gson, which is contained by 44.8% collected apps and
leads the ranking list. Six of ten in the list are commonly
used utility libraries (e.g., Gson, universal-image-loader, etc.).
It also includes social media library (like Facebook, Wechat),
analytics library (like Crashlytics), and so on.

C. App Trimming and Rewriting

For each app, we first cut off its detected third-party
libraries. Then we select the matched libraries from our lib
dataset, try to replace the old version with a new version
according to the strategy in Section III-C. In the end, we patch
them into tailored apps and customized libraries. For each app,

350

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DETAILS OF CODE PATCHING

AVERAGE NUMBER IN EACH APP RATIO
INVOKED LIBRARY APIS 541.7 NA
CHANGED CODE LINES 4,350.18 0.41%
ADDED CODE LINES 2,473.65 0.23%

Public Method
51.19%

Public Field
32.53%

Static Method
11.15%

Public Interface
1.77%

Extra Component

1.08%

Public Class

1.59%

Abstract Class

0.69%

Fig. 8. The figure shows the percentage of all invoked API types.

we patch each library API invocation point and add some extra
code (IDL and Entry).

Table III shows that, we find 541.7 different library APIs in
each app on average. In response, for each app 4,350.18 lines
of smali code are changed and 2,473.65 lines are added.
Considering that a normal app often contains more than a
million lines of smali code, the amount of our patched code
is acceptable. The detailed distribution rate of invoked API
type is shown in Figure 8. More than half (51.19%) of the
APIs are in type of public methods.

In our experiment, we find most detected third-party li-
braries are able to be updated (to a new version, may not be the
latest one). 231 of 2,695 (8.6%) detected library instances are
not used by app actually (App developer adds them into app
but not invokes any of their APIs). For these “dead” libraries,
we directly remove them without a further code patching. For

Un-updatable
13.6%

Updatable
not latest version

41.8%

Updatable
to latest version

44.6%

Fig. 9. The figure shows the library updatability in our experiment.

the remaining 2,464 libraries, we will check whether they can
be updated to any new version and the app can keep stable as
mentioned in Section III-C. As Figure 9 shows, 2,129 of 2,464
(86.4%) libraries can be updated at least one version. Specially,
1099 (44.6%) libraries can be updated to the latest versions.
For example, the most common used library Gson, which is
used by 44.8% apps has a 100% updated rate. Because it hasn’t
changed its APIs from its version 2.0 to 2.8.1. Finally, we
generate only 206 versions of customized libraries to replace
the 2,695 detected library instances (which cover 623 original
versions of libraries).

D. App Running and Stability

We prepare ten Android devices installed with Lib Manager
to serve as client sides. According to each volunteer’s original
app list, every device downloads and installs the corresponding
tailored apps to simulate the actual situation. Then, we evaluate
tailored apps’ stability in two steps.

In the first step, we manually run each app for five minutes
and try our best to trigger more app code. Since most apps
need to log in at first, so we select manual operation instead of
automated execution. To trigger more patched APIs, we would
register and login accounts, click all buttons, and we use adb
(Android Debug Bridge) tool to trigger all extra components
added by third-party libraries. We also consider the functions
of detected libraries while performing operations. For example,
we make more sharing-related operations for facebook-share
library, and make more payment-related operations for paypal
library. Here we extra add some code for exception handling
and logging code into each API invocation point to help us
obtain more details. After the execution, we check the logs to
determine whether each API is triggered or any exception has
occurred.

As a resutl, all 502 tailored apps run normally, no crash or
exception occurs. Table IV shows the details about triggered
APIs and the trigger ratio. Totally, we can trigger 63% of all
patched APIs. Among all API types, public class and extra
component have higher trigger ratios (93% and 89.8%). In
most cases, public class contains the most commonly used
functions so it’s easy to be triggered. For extra component,
we will trigger it forwardly as mentioned above. Although we
still miss 37% of all patched APIs, the missed ones have the
similar code formats as the triggered ones, so we can believe
their effectiveness. On the other hand, in average, each app has
10,684.29 API trigger logs within five minutes. This value
is extremely high and draws our attention. After checking
the logs, we find some libraries would provide special APIs
which are invoked continuously with a high frequency. We
summarize the top five frequently invoked APIs in Table V.

In the second step, we request each volunteer to use our
test device instead of their own mobile for 24 hours. In the
meanwhile, volunteers just use each app as usual and notice
whether any app is abnormal. In the end, they feedback their
experiences. As a result, all tailored apps work normally and
no functional abnormalities have occurred. This further proves

351

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
API INVOCATIONS FOR EACH APP IN FIVE MINUTES APP RUNNING TEST

API TYPE PUBLIC METHOD STATIC METHOD PUBLIC FIELD PUBLIC CLASS PUBLIC INTERFACE ABSTRACT CLASS EXTRA COMPONENT TOTAL

INVOCATION LOGS 5,838.3 563.3 17.5 3,919.8 255.09 85.0 5.3 10,684.29
TRIGGERED APIS 185.3 36.2 98.5 8.0 5.8 2.2 5.3 341.3
PATCHED APIS 277.3 60.4 176.2 8.6 9.6 3.7 5.9 541.7
TRIGGER RATIO 66.8% 59.9% 55.9% 93% 60.4% 59.5% 89.8% 63.0%

TABLE V
API WITH HIGH FREQUENCY

LIBRARY API INVOCATION TIMES/MINUTE
Google Play Services GoogleApiClient;→connect 8,384.8
Okio BufferedSink;→writeUtf8 5,453.2
Okio BufferedSource;→read 5,311.4
Dagger Linker;→requestBinding 3,365.0
Google Play Services GoogleApiClient;→isConnected 3,266.0

that our conservative strategy for library updating can ensure
the app’s stability.

E. Effectiveness

TABLE VI
AVERAGE FILE SIZE CHANGES BEFORE → AFTER APPCOMMUNE

DEX 6.48 MB→1.67MB (25.8%)
JAVA LIB 456.2 KB→461.8 KB (101.2%)
APK 14.3 MB→12.2 MB (85.3%)

TABLE VII
SPACE SAVING FOR 10 EXPERIMENTAL GROUPS

GROUP APP SPACE CHANGE RATIO
1 52 743.6MB→664.3MB 89.3%
2 83 1,173.2MB→1,033.6MB 88.1%
3 34 496.2MB→440.1MB 88.7%
4 62 875.6MB→787.2MB 89.9%
5 38 534.3MB→465.9MB 87.2%
6 72 1,029.6MB→923.8MB 89.7%
7 40 597.4MB→532.3MB 89.1%
8 59 874.3MB→781.6MB 89.4%
9 47 627.1MB→548.7MB 87.5%
10 36 504.8MB→448.3MB 88.8%
TOTAL 523 7.46GB→6.63GB 88.9%

1) Space Saving: By managing the third-party libraries
centrally, APPCOMMUNE can effectively reduce the size of
app to save the network flow and device storage. We calculate
the average file size changes of our samples, the result is
shown in Table VI. On average, by separating all third-party
libraries, the tailored dex file is only 25.8% of the original
dex file in size (with a difference of 4.81 MB). And the
tailored app is 85.3% of the original app in size (with a
difference of 2.1MB). Compared with dex file, the difference
reduces in app because the dex file would be compressed in
an apk file. Due to the extra code IIL added into the library,
the customized library is 101.2% of the original one in size.

For ten experimental groups, we calculate the whole oc-
cupied space: tailored apps, customized libraries and the Lib
Manager apk file (which is only 0.98MB). Then we compare
with the total size of corresponding original apps. The result

is shown in Table VII. Totally, for all 523 apps (502 different
apps and 21 popular ones which exist in multiple groups),
APPCOMMUNE can save totally 830MB device space. The
space saving ratios for all groups vary from 87.2% to 89.9%.
In average, 11.1% device storage and network flow is saved
for a normal mobile.

2) Security Promotion: To verify whether the library up-
dating of APPCOMMUNE enhances the security of app, we
select five publicly revealed security vulnerabilities to eval-
uate it. Table VIII gives the details about the vulnerabili-
ties. The vulnerability of Dropbox is caused by an exposed
Activity com.dropbox.client2.android.AuthActivity.
Similarly, Mopub and Umeng also suffer from vulnerable
components. Facebook has a vulnerability in its login process
and Okhttp has a vulnerability that allows an attacker to bypass
certificate pinning. According to the vulnerable library ver-
sions, we totally find 31 influenced apps. We utilize 360app-
scan [27], an on-line app vulnerability scanning service, to
help detect the potential vulnerabilities.

As a result, the vulnerabilities of Dropbox, Mopub, and
Umeng can be detected. According to the details of the other
two vulnerabilities, we manually check the other apps and
confirm that all selected apps are vulnerable. Then we use
360appscan or manual analysis to review the corresponding
tailored apps. As expected, APPCOMMUNE has replaced all
vulnerable libraries and all these tailored apps are safe. There-
fore, APPCOMMUNE is effective in enhancing app security.

F. Performance

The workflow of APPCOMMUNE can be divided into two
parts: static process on server side and dynamic execution
on client side. Complex and time-consuming code patching
process is performed on Market Proxy, therefore APPCOM-
MUNE doesn’t bring much performance loss to app executions.
Totally, we consume 9.5 hours to process 502 apps. Table IX
shows the average time for each step of our static process on
server side. In practice, the process of libraries (generating
library profile and customized library) is pre-prepared. The
average time to prepare a new uploaded app for downloading
is only 68.1 seconds (library detection and generating tailored

352

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
THE VULNERABILITY DETECTION RESULTS BEFORE AND AFTER THE LIBRARY UPDATING

LIBRARY INFL VERSIONS CVE INFL APPS DETECTING ENGINE BEFORE→ AFTER UPDATING
Dropbox 1.5.4-1.6.1 CVE-2014-8889 4 360appscan 4→0
Facebook 3.15 - 5 manual check 5→0
Mopub 3.10-4.3 - 11 360appscan 11→0
Okhttp 3.0.0-3.1.1 CVE-2016-2402 7 manual check 7→0
Umeng 3.0.0-3.1.3 - 4 360appscan 4→0

TABLE IX
CONSUMED TIME IN STATIC PROCESS

AVERAGE TIME
LIB PROFILE 5.129 sec/lib
PROCESS CUSTOMIZED LIB 5.782 sec/lib
LIB DETECTION 33.997 sec/app
PROCESS TAILORED APP 34.268 sec/app

app), which is acceptable. On the cient side, the tailored app
still follows the execution principle of Android system, and
runs as normal apps. Although the process of customized
library loading would consume extra time, the app user will not
feel any obvious lags. On average, each app extra consumes
0.5 second on each start-up process. APPCOMMUNE only
brings ignorable performance loss while the execution of apps.

V. DISCUSSION

APPCOMMUNE makes third-party library sharing available
and proves that automatic updates of third-party libraries
are feasible in theory. However, some limitations still exist
in practice. For example, the app developer doesn’t agree
with the automatic update or some developers modify the
original libraries personally which causes incompatibilities
after automatic updates. Fortunately these are rare cases. It’s
more important to raise app developers’ awareness of safety.
APPCOMMUNE’s app trimming is based on static analysis,
which means it would suffer from app code protections. To
address this challenge, we can utilize AppSpear [28], an open-
source unpacking system which can transform a packed app
into unpacked one automatically.

VI. RELATED WORK

Various studies emphasize the security prob-
lems brought by third-party libraries. Re-
searches [29] [30] [31] [32] [33] [34] [35] [36] [37] [38]
showed that third-party library would leak privacy, abuse
permissions, and even bring security vulnerabilities. Erik et
al. [1] proposed the library outdateness problem in Android
and even explored the reasons. We verify their findings in
our experiments and we firstly propose the solution for the
library outdateness problem.

These security problems have motivated approaches to de-
tect third-party libraries. Approaches [31] [30] [39] were early
proposed which select package name as a simple feature. Some
other works [40] [41] [42] are based on machine learning
or code clustering, which extract features from app code.
LibScout [3] use class hierarchy as feature which is extracted

from original library. Approaches have also been proposed to
solve these security problems. Some approaches select to limit
third-party libraries’ permissions and behaviors. AdSplit [4]
puts ad library code into separated processes. AdDroid [5]
proposes a new Android framework to allow ad library’s
privilege separation. PEDAL [6] limits ad library’s behaviors
by inline reference monitoring. FlexDroid [7] enforces in-
app privilege separation. And CompARTist [43] partitions
apps directly at compile-time into isolated, privilege-separated
compartments for the host app and the included third-party
libraries. APKLancert [8] radically removes the malware and
ad libraries from the repacked apps. These approaches are
more suitable for malicious libraries, because the separating
or removing would impact the libraries’ functions. Comparing
with them, APPCOMMUNE reduces the impact of the vulnera-
bility by automatically updating the third-party libraries which
doesn’t impact the behaviors of libraries.

VII. CONCLUSION

This paper proposes APPCOMMUNE, an automated system
to achieve a third-party library sharing strategy. APPCOM-
MUNE separates all third-party libraries from apps on the
server side, and centrally manages the libraries on client side.
Multiple apps would share one library which can avoid dupli-
cated libraries and save the bandwidth as well as storage. The
managed libraries are automatically updated, which reduces
the threats of vulnerabilities in outdated third-party libraries.
Our experiment demonstrates that APPCOMMUNE is a feasible
management and it can effectively help update the third-party
libraries and reduce the file size of apps.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their insightful comments which greatly help to improve the
manuscript. This work is partially supported by the Key
Program of National Natural Science Foundation of China
(Grant No.U1636217), the General Program of National Nat-
ural Science Foundation of China (Grant No.:61872237),
the National Key Research and Development Program of
China (Grant No.2016YFB0801200), the Major Project of
Ministry of Industry and Information Technology of China
(Grant No.[2018] 282). We especially thank the Ant Financial
Services Group for the support of this research within the
SJTU-AntFinancial joint Institute of FinTech Security. This
work is funded in part by Nanjing Turing Artificial Intelligence
Institute.

353

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep Me Updated:
An Empirical Study of Third-Party Library Updatability on Android,”
in CCS, 2017.

[2] M. Chi, “LibDetector: Version Identification of Libraries in Android
Applications,” in Rochester Institute of Technology, 2016.

[3] M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library
Detection in Android and its Security Applications,” in CCS, 2016.

[4] S. Shekhar, M. Dietz, and D. S. Wallach, “AdSplit: Separating Smart-
phone Advertising from Applications.” in USENIX, 2012.

[5] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege
Separation for Applications and Advertisers in Android,” in ASIACCS.

[6] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient Privilege De-
Escalation for Ad Libraries in Mobile Apps,” in MobiSys, 2015.

[7] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID: Enforcing
In-App Privilege Separation in Android.” in NDSS, 2016.

[8] W. Yang, J. Li, Y. Zhang, Y. Li, J. Shu, and D. Gu, “APKLancet:
Tumor Payload Diagnosis and Purification for Android Applications,”
in AsiaCCS, 2014.

[9] “NoograNuts in Google Play,” https://play.google.com/store/apps/details?
id=com.bengigi.noogranuts.

[10] “MAPSME in Google Play,” https://play.google.com/store/apps/details?
id=com.mapswithme.maps.pro.

[11] “Facebook Changelog,” https://developers.facebook.com/docs/android/change-
log-4x, 2018.

[12] “LibScout Project,” https://github.com/reddr/LibScout, 2017.
[13] “Smali and Baksmali,” https://github.com/JesusFreke/smali.
[14] “Android Smart Update,” https://techcrunch.com/2012/08/16/google-

turns-on-smart-updates-for-android-apps/.
[15] “Google Play,” https://play.google.com/store.
[16] “Tencent Android Market,” http://sj.qq.com/myapp/.
[17] “Gson,” https://github.com/google/gson.
[18] “Universal-Image-Loader,” https://github.com/nostra13/Android-

Universal-Image-Loader.
[19] “Nine Old Androids,” https://github.com/JakeWharton/NineOldAndroids.
[20] “Apache HttpClient for Android,” http://hc.apache.org/.
[21] “Facebook,” https://developers.facebook.com.
[22] “WeChat,” http://open.wechat.com.
[23] “Fresco,” https://github.com/facebook/fresco.
[24] “Crashlytics,” https://github.com/crashlytics/cannonball-android.
[25] “OkHttp,” http://square.github.io/okhttp/.
[38] C. Zuo, Z. Lin, and Y. Zhang, “Why Does Your Data Leak? Uncovering

the Data Leakage in Cloud from Mobile Apps.”

[26] “Admob,” https://www.google.com/admob/.
[27] “Appscan 360,” http://appscan.360.cn/.
[28] B. Li, Y. Zhang, J. Li, W. Yang, and D. Gu, “AppSpear: Automating

the Hidden-Code Extraction and Reassembling of Packed Android
Malware,” in Journal of Systems and Software, 2018.

[29] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investi-
gating User Privacy in Android Ad Libraries,” in MoST, 2012.

[30] T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal Analysis of
Android Ad Library Permissions,” arXiv preprint arXiv:1303.0857,
2013.

[31] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe Exposure
Analysis of Mobile in-App Advertisements,” in WISEC, 2012.

[32] S. Son, D. Kim, and V. Shmatikov, “What Mobile Ads Know About
Mobile Users.” in NDSS, 2016.

[33] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating SDKs: Uncovering Assumptions Underlying Secure Au-
thentication and Authorization.” in USENIX, 2013.

[34] H. Wen, J. Li, Y. Zhang, and D. Gu, “An Empirical Study of SDK
Credential Misuse in iOS Apps,” in APSEC, 2018.

[35] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu, “Show
Me The Money! Finding Flawed Implementations of Third-Party in-App
Payment in Android Apps,” in NDSS, 2017.

[36] X. Zhu, J. Li, Y. Zhou, and J. Ma, “AdCapsule: Practical Confinement
of Advertisements in Android Applications,” IEEE Transactions on
Dependable and Secure Computing, 2018.

[37] C. Zuo and Z. Lin, “Smartgen: Exposing Server Urls of Mobile
Apps with Selective Symbolic Execution,” in Proceedings of the 26th
International Conference on World Wide Web, 2017.

[39] K. Chen, P. Liu, and Y. Zhang, “Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets,”
in ICSE, 2014.

[40] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A Scalable and
Accurate Two-Phase Approach to Android App Clone Detection,” in
ISSTA, 2015.

[41] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and Accurate
Detection of Third-Party Libraries in Android Apps,” in ICSE, 2016.

[42] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo,
“Libd: Scalable and Precise Third-Party Library Detection in Android
Markets,” in ICSE, 2017.

[43] J. Huang, O. Schranz, S. Bugiel, and M. Backes, “The ART of App
Compartmentalization: Compiler-based Library Privilege Separation on
Stock Android,” in CCS, 2017.

354

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 27,2021 at 10:24:13 UTC from IEEE Xplore. Restrictions apply.

