
A systematic review of fuzzing techniques

Chen Chen a,*, Baojiang Cui a, Jinxin Ma b, Runpu Wu b, Jianchao Guo a,
Wenqian Liu a

a Beijing University of Posts and Telecommunications, No 10, Xitucheng Road, Haidian District, Beijing, China
b China Information Technology Security Evaluation Center, Building No.1, Courtyard No.8, Shangdixi Road,
Haidian District, Beijing, China

A R T I C L E I N F O

Article history:

Received 7 October 2017

Received in revised form 26 January

2018

Accepted 3 February 2018

Available online 13 February 2018

A B S T R A C T

Fuzzing is an effective and widely used technique for finding security bugs and vulnerabili-

ties in software. It inputs irregular test data into a target program to try to trigger a vulnerable

condition in the program execution. Since the first random fuzzing system was con-

structed, fuzzing efficiency has been greatly improved by combination with several useful

techniques, including dynamic symbolic execution, coverage guide, grammar representa-

tion, scheduling algorithms, dynamic taint analysis, static analysis and machine learning.

In this paper, we will systematically review these techniques and their corresponding rep-

resentative fuzzing systems. By introducing the principles, advantages and disadvantages

of these techniques, we hope to provide researchers with a systematic and deeper under-

standing of fuzzing techniques and provide some references for this field.

© 2018 Elsevier Ltd. All rights reserved.

Keywords:

Software bug

Vulnerability

Fuzzing

Dynamic symbolic execution

Coverage guide

Grammar representation

Scheduling algorithms

Taint analysis

Static analysis

1. Introduction

A software bug is an error, flaw, failure or fault in a computer
program or system that causes it to produce an incorrect or
unexpected result or to behave in unintended ways (Wikipedia,
2017a). Bugs usually stem from a program’s source code or
design. To eliminate such errors, traditional test methods use
handwritten test cases, such as unit testing, mainly to vali-
date the functionality of the software components. However,
this approach is insufficient to uncover critical bugs.

Critical bugs, called software vulnerabilities, are signifi-
cantly more dangerous than others and may affect the security

of the entire system. Vulnerabilities allow attackers to corrupt
important data structures and execute arbitrary code with the
privileges of the program, even completely controlling the
system on which the program is running. Vulnerability is
the intersection of three elements: a system susceptibility or
flaw, access to the flaw by an attacker, and the attacker’s ca-
pability to exploit the flaw (Wikipedia, 2017b).

Fuzzing is a highly effective vulnerability detection tech-
nique. It tests a system with the continuous processing of test
cases generated by another program. At the same time, the
system is monitored to expose any defects revealed by pro-
cessing this input.The first fuzzing tool was developed by Miller
et al. (1990) and was originally designed to test the reliability

* Corresponding author.
E-mail address: 00152tenten@bupt.edu.cn (C. Chen).

https://doi.org/10.1016/j.cose.2018.02.002
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.02.002&domain=pdf
mailto:00152tenten@bupt.edu.cn
https://doi.org/10.1016/j.cose.2018.02.002
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE

of UNIX tools. Since then, increasing numbers of systems have
improved the efficiency of fuzzing by introducing new tech-
niques, and many vulnerabilities have been detected in software
programs. In this article, we will focus on fuzzing techniques
and fuzzing systems for expanded discussion.

The rest of this paper is structured as follows. Section 2 in-
troduces fuzzing systems from different perspectives. Section
3 analyses different techniques used in fuzzing systems. Section
4 presents representative fuzzing systems by time period.
Section 5 analyses and compares multiple representative
fuzzing systems. Section 6 discusses the future directions of
fuzzing. Section 7 presents the conclusions drawn.

2. Anatomy of a fuzzing system

Nearly 30 years have passed since the first fuzzing system was
constructed. Several new techniques have been introduced into
fuzzing systems, which are becoming increasingly compli-
cated. In this section, we will analyse fuzzing systems and
fuzzing techniques from different angles, including the struc-
ture of a fuzzing system, the classifications of fuzzing systems
and fuzzing systems used in different fields.

2.1. The structure of a fuzzing system

Due to the inefficiency of early fuzzing systems, fuzzing tech-
niques have been improved and combined with other
techniques over the years. The structure of fuzzing systems
has also changed and become more complicated.

2.1.1. The original fuzzing system
The structure of the early fuzzing system is simple, as shown
in the blue dashed frame in Fig. 1.The words linked to the func-
tion module are the techniques implemented in this module.
The relation between modules connected by red arrows is
control, and the relation between modules connected by black

arrows is data transfer. Five modules are contained within the
system: the target program, test case generator, delivery module,
bug detector and bug filter.

The target program is the program being tested. It can be
a binary code with or without source code, a program for con-
suming files or a network service program, an application
program, an operating system, a compiler, a browser, a library,
etc.

The test case generator normally mutates a sample and
creates an input for the application to be tested. The gener-
ated input can be a particular type of file or a network data
stream. The generator can use different mutation strategies
(Lcamtuf, 2014) for sample generation to improve the effi-
ciency of fuzzing.

The delivery module accepts samples from the test case gen-
erator and sends them to the target program for consumption.
The delivery module is closely related to the input nature of
the target application; for example, the delivery module of a
system that receives files as input is different from that of a
system that receives data streams from the network.

When a target program crashes or reports errors in fuzzing,
the relevant information must be collected and analysed to de-
termine whether a bug is detected. Some tools (Hastings and
Joyce, 1991; Nethercote and Seward, 2007; Serebryany et al., 2012;
Slowinska et al., 2012) facilitate bug detection and can also be
used to record the relevant exception information.

Security testers must make clear whether the resulting error
can be exploited. Filtering vulnerabilities is usually done manu-
ally and is therefore usually time consuming and difficult to
solve. Some new tools (Chen et al., 2013; Francis et al., 2004;
Team MSECMSS, 2013; Zalewski, 2016) have eased the problem;
e.g., !Exploitable (Team MSECMSS, 2013) built on top of GDB
(Stallman et al., 2002) can assess the exploitability of a bug.

2.1.2. The extended fuzzing system
Due to the inefficiency of the early fuzzing systems, research-
ers have introduced a variety of different techniques to improve

Fig. 1 – An architectural diagram of fuzzing system. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

119c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

the efficiency. These techniques include dynamic symbolic ex-
ecution (Cadar et al., 2008; Cha et al., 2012; Chipounov et al.,
2011; Godefroid et al., 2008), coverage feedback (Böhme et al.,
2016, 2017; Zalewski, 2016; Google, 2017a, 2017b), grammar rep-
resentation (Banks et al., 2006; Röning et al., 2002; Peachtec,
2017; Bradshaw, 2010; Fitblip 2016), taint analysis (Ganesh
et al., 2009; Haller et al., 2013; Neugschwandtner et al., 2015;
Wang et al., 2010), static analysis (Kinder et al., 2009; Sparks
et al., 2007; Tip, 1994; Weiser, 1979, 1981, 1982), scheduling al-
gorithms (Böhme et al., 2016, 2017; Householder and Foote, 2012;
Woo et al., 2013) and machine learning (Godefroid et al., 2017).
These techniques extend the structure of the fuzzing system.
The current structure of fuzzing systems includes the content
shown in red dashed lines in Fig. 1.

The monitor is used to obtain runtime information, which
is sent to the test case generator. The runtime information in-
cludes symbolic expressions (Cadar et al., 2008; Godefroid
et al., 2005, 2008; Haller et al., 2013; Neugschwandtner et al.,
2015; Sen et al., 2005; Stephens et al., 2016), path coverage data
(Zalewski, 2016; Google 2017a, 2017b) and taint information
(Ganesh et al., 2009; Rawat et al., 2017; Wang et al., 2010). Sym-
bolic expressions are used to generate input data. Path coverage
data are used for seed selection in the next loop. Taint data
are used to infer which offsets in the input influence the ex-
ecution path of the program.

The static analyser extracts static information (Babić et al.,
2011; Grieco et al., 2016; Haller et al., 2013; Kinder et al., 2009;
Neugschwandtner et al., 2015; Sparks et al., 2007) from a binary
program or source code to direct the fuzzing process (Babić
et al., 2011; Grieco et al., 2016; Haller et al., 2013;
Neugschwandtner et al., 2015). The static information, which
includes control flow graphs (Kinder et al., 2009; Sparks et al.,
2007), potentially vulnerable code (Babić et al., 2011; Haller
et al., 2013; Neugschwandtner et al., 2015) and specified pat-
terns (Grieco et al., 2016), can be used to guide the fuzzing.

In addition, grammar representation (Banks et al., 2006;
Röning et al., 2002; Peachtec 2017; Bradshaw, 2010; Fitblip, 2016)
and scheduling algorithms (Böhme et al., 2016, 2017;
Householder and Foote, 2012; Woo et al., 2013) are added to
the test case generator to enhance the fuzzing efficiency.
Grammar representation is used to generate fine samples by
obtaining input format information. Scheduling algorithms are
used to improve the efficiency of fuzzing by using the seed
choosing strategy and seed mutation strategy. All of the tech-
niques used in the different modules are described in detail
in Section 3.

2.2. The classification of fuzzing

Fuzzing techniques can be classified from multiple perspec-
tives. They can be divided into black-box, white-box and grey-
box fuzzing by the understanding of the target program, into
mutation-based and generation-based fuzzing by the type of
data generation, and into feedback and no-feedback fuzzing
by the feedback type.

2.2.1. White-box, black-box and grey-box
Black-box fuzzing (Miller et al., 1990; Peachtec, 2017; Fitblip, 2016;
Helin, 2017) does not consider the internal logic of the program

but continuously provides input data and observes the output
results. Black-box fuzzing lies at one extreme in terms of the
level of program understanding.

At the other extreme is white-box fuzzing (Cadar et al., 2008;
Godefroid et al., 2005, 2008; Haller et al., 2013), which can obtain
detailed information on the program, including source code,
design specifications, and detailed runtime information. This
information is then utilized to improve the efficiency of the
fuzzing process.

Between these two extremes lies grey-box fuzzing (Böhme
et al., 2016; Zalewski, 2016), which obtains some information
but not details, e.g., runtime coverage information.

2.2.2. Mutation-based and generation-based
Fuzzing can be divided into mutation-based (Ganesh et al., 2009;
Householder and Foote, 2012; Miller et al., 1990; Peachtec, 2017)
and generation-based (Röning et al., 2002; Peachtec, 2017; Spike
fuzzer platform) categories according to the input generation
strategy.The mutation-based approach performs random trans-
formations on a prepared input seed, while the generation-
based approach generates inputs using a formal input format
specification, e.g., grammar (Röning et al., 2002), block (Bradshaw,
2010) or model (Peachtec, 2017).

Mutation-based fuzzing may cause the inputs to be re-
jected early in processing because the mutated input data
deviates too much from the format expected by the target
program. However, this deficiency is relieved by the input data
specification in generation-based approaches. Therefore,
mutation-based fuzzing almost invariably generates lower code
coverage than generation-based fuzzing, but creating the input
data specification is often very time consuming and cannot
include all possible kinds of input formats.

2.2.3. Feedback and no-feedback
Feedback refers to whether the runtime information can serve
to guide the generation of the test case in the next loop. Feed-
back techniques are mainly based on path coverage. No-
feedback fuzzing does not obtain any information from the
program execution.

Coverage-guided fuzzers (Zalewski, 2016; Google, 2017a,
2017b) obtain the path coverage information generated by the
instrumentation tools (Bhansali et al., 2006; Luk et al., 2005;
Nethercote and Seward, 2007; Bruening, 2017; Paradyn, 2017).
This information is then used to guide the generation of the
test case in the next loop to maximize the path coverage. Ex-
amples include AFL (Zalewski, 2016), honggfuzz (Google, 2017a),
and Syzkaller (Google, 2017b).

2.3. Fuzzing systems used in different targets

Fuzzing can be used to detect vulnerabilities in desktop PCs
and embedded devices (Wikipedia, 2017c). Researchers can ef-
fectively use different currently developed fuzzing techniques
on desktop PCs (Godefroid et al., 2008; Stephens et al., 2016;
Zalewski, 2016; Peachtec, 2017) but cannot use them well on
embedded devices due to their limited resources. First, many
fuzzing tools cannot work on the embedded devices because
of the limited hard disk space, memory space and CPU speed,
etc. Second, many fuzzing tools rely on rich software

120 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

interfaces of operation systems, which are pruned in embed-
ded devices. Third, the fuzzing process is based on the
observable reply of the target errors that have occurred, but
error occurrence mechanisms do not exist in many embed-
ded devices (Muench et al., 2018).Therefore, fuzzing for desktop
PCs and that for embedded devices are quite different. Some
studies have performed fuzzing on embedded devices (Halperin
et al., 2008; Muench et al., 2018; Rouf et al., 2010; Shoshitaishvili
et al., 2015; Zaddach et al., 2014). In this paper, we focus on a
discussion of fuzzing techniques and fuzzing systems for the
desktop PC.

Fuzzing has been widely used in different targets on desktop
PCs. We introduce some open-source fuzzing tools, which are
shown in Fig. 2. The main difference between these tools is the
adapter interface for the target. The fuzzing techniques used
in these tools may be the same or different. For example, AFL
(Zalewski, 2016), libfuzzer (LLVM-admin team, 2017), and
syzkaller (Google, 2017b) leverage coverage-guided tech-
niques to perform a fuzzing test on file-type applications,
libraries and the OS kernel, respectively. For the same target,
for example, the file-type application, AFL (Zalewski, 2016) le-
verages coverage-guided techniques, and BFF (Householder and
Foote, 2012) adds scheduling algorithms to random fuzzing. In
this section, we do not emphasize the use of techniques in these
tools; some of these techniques are not the most efficient, but
they can supply a fuzzing frame for different targets. More tech-
niques can be added to these tools for higher efficiency if
researchers want to perform fuzzing on a specific target.

The tools used in file application fuzzing include AFL
(Zalewski, 2016), BFF (Householder and Foote, 2012), FOE
(Householder, 2012), radamsa (Helin, 2017), QuickFuzz (CIFASIS,
2017), OFuzz (Cha, 2017), and go-fuzz (Smith, 2017); in proto-
col fuzzing, Dizzy (Daniel, 2017), Sulley (Fitblip, 2016), Backfuzz

(Choren, 2017), Pulsar (Pulsar), Netzob (Bossert, 2017), Kitty
(Bsharet, 2017), and Peach (Peachtec, 2017) are used; in opera-
tion system fuzzing, PassiveFuzzFrameworkOSX (Li, 2017) and
TriforceAFL (Newsham, 201) are used; in OS kernel fuzzing,
KernelFuzzer (MWR Labs, 2017), syzkaller (Google, 2017b),Trinity
(Jones, 2017), and IOCTL (Google, 2017) are used; in library
fuzzing, Libfuzzer (LLVM-admin team, 2017) is used; in API
fuzzing, syntribos (Nair, 2017) is used; in web fuzzing, filebuster
(Sintra, 2017), wfuzz (Mendez, 2017), and Rfuzz (Shaw, 2017) are
used; in service fuzzing, Diffy (Khanduri, 2017) is used; in
ActiveX fuzzing, dranzer (Householder, 2017) is used; in virtual
machine fuzzing, KEMUfuzzer (Martignoni, 2017) is used; in
browser fuzzing, Wadi (El-Sherei, 2017), NodeFuzz (Kettunen,
2017), and grinder (Fewer, 2017) are used; in JSON data fuzzing,
PyJFuzz (Linguaglossa, 2017) is used; in JavaScript fuzzing, jsfuzz
(Peet, 2017) is used; in regular expressions fuzzing, Regex Fuzzer
(Trull, 2010) is used; and in compiler fuzzing, csmith (Regehr,
2017) and LangFuzz (Holler et al., 2012) are used. In addition,
Nightmare (Koret, 2017), BrundleFuzz (Prado, 2017), FuzzFlow
(Talos, 2017a), and clusterfuzz (Google, 2017c) can perform dis-
tributed fuzzing.

3. Fuzzing techniques

Many techniques have been introduced into fuzzing systems
to improve the efficiency of random mutation fuzzing, includ-
ing dynamic symbolic execution (Cadar et al., 2008; Cha et al.,
2012; Chipounov et al., 2011; Godefroid et al., 2008), coverage
feedback (Böhme et al., 2016, 2017; Zalewski, 2016; Google 2017a,
2017b), grammar representation (Banks et al., 2006; Röning
et al., 2002; Peachtec, 2017; Bradshaw, 2010; Fitblip, 2016), taint
analysis (Ganesh et al., 2009; Haller et al., 2013;

Fig. 2 – Fuzzing Tools Used in Different Targets.

121c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

Neugschwandtner et al., 2015; Wang et al., 2010), static analy-
sis (Kinder et al., 2009; Sparks et al., 2007; Tip, 1994; Weiser,
1979, 1981, 1982) and scheduling algorithms (Böhme et al., 2016,
2017; Householder and Foote, 2012; Woo et al., 2013). Each tech-
nique offers different trade-offs between soundness,
completeness, speed, precision, scalability and the level of au-
tomation. According to the role the fuzzing techniques play,
these techniques can be divided into three categories: sample
generation techniques, dynamic analysis techniques and static
analysis techniques. These three types of techniques corre-
spond to three parts in the fuzzing system structure in Fig. 1:
the test case generator, monitor, and static analyser.

3.1. Sample generation techniques

Sample generation techniques are used to select and mutate
seeds and to restrict and generate new samples. These tech-
niques are implemented in the test case generator shown in
Fig. 1 and include three main types: random mutation (Hocevar,
2010; Miller et al., 1990), grammar representation (Banks et al.,
2006; Godefroid et al., 2008; Pham et al., 2016; Röning et al.,
2002; Peachtec, 2017; Bradshaw, 2010; Fitblip, 2016) and sched-
uling algorithms (Böhme et al., 2016, 2017; Householder and
Foote, 2012; Woo et al., 2013).

3.1.1. Random mutation
The core idea of random mutation (Hocevar, 2010; Miller et al.,
1990) is to generate new input from a prepared seed by ran-
domly mutating some field.These generated samples are input
into a program, which is then watched for crashes that might
occur.

Fuzzing systems based on random mutation have been ex-
tensively used for the security testing of applications. They can
be quickly implemented and are highly scalable since they do
not rely on complex computations (Cadar et al., 2008; Cha
et al., 2012; Chipounov et al., 2011; Godefroid et al., 2008) or
heavy program monitoring techniques (Bhansali et al., 2006;
Luk et al., 2005; Nethercote and Seward, 2007; Bruening, 2017;
Paradyn, 2017). Nevertheless, this approach suffers from serious
limitations in uncovering complex flaws. First, it is blind to the
current state of program execution, so there is no aim to the
mutation of the seed. In addition, if the input data contains
magic bytes or checksum bytes, or if the program contains
nested conditions, then the seed cannot access deeper parts
of the program.

3.1.2. Grammar representation
The random mutation technique (Hocevar, 2010; Miller et al.,
1990) is not efficient for finding deep bugs in the target program
due to its blind emission of random data. Most of the test cases
are rejected in the early steps of the program execution at
parsing or checksum verification. The grammar representa-
tion technique (Banks et al., 2006; Godefroid et al., 2008; Pham
et al., 2016; Röning et al., 2002; Peachtec, 2017; Bradshaw, 2010;
Fitblip, 2016), introduced in the 1970s (Hanford, 1970; Purdom,
1972), overcomes this problem by using grammar to con-
strain the data structure of the test case.

Several methods can be used to describe the input data struc-
ture, including block-based (Bradshaw, 2010), grammar-based

(Röning et al., 2002) and model-based (Peachtec, 2017) tech-
niques.The input data structure can be obtained automatically
by using a dynamic analysis technique (Bastani et al., 2017; Cui
et al., 2008; Höschele and Zeller, 2016; Kifetew et al., 2017; Kim
et al., 2013; Lin and Zhang, 2008) or by manually writing
grammar files (Peachtec, 2017) and codes (Bradshaw, 2010).
Several fuzzing systems have combined this approach with
random mutation (Banks et al., 2006; Peachtec, 2017; Bradshaw,
2010; Fitblip, 2016) and dynamic symbolic execution (Godefroid
et al., 2008; Majumdar and Xu, 2007; Pham et al., 2016).

Grammar representation is most effective for testing ap-
plications with complex structured input formats. However, it
requires a high level of expertise on the target application or
input format. Furthermore, the specified format is typically
written by hand, and this process is laborious, time consum-
ing, and error-prone.

3.1.3. Scheduling algorithms
Scheduling algorithms (Böhme et al., 2016, 2017; Householder
and Foote, 2012; Woo et al., 2013) are feasible methods to maxi-
mize the fuzzing outcome using an optimized seed choosing
strategy and seed mutation strategy. For example, how to search
over the parameter space of fuzzing (Householder and Foote,
2012; Woo et al., 2013) is stated as a multi-armed bandit (MAB)
problem (Berry and Fristedt, 1985; Woo et al., 2013). A sched-
uling algorithm can contain many more algorithms, e.g.,
simulated annealing algorithms (Böhme et al., 2017), Markov
algorithms (Böhme et al., 2016), and statistical algorithms
(Householder and Foote, 2012; Woo et al., 2013). These algo-
rithms can improve the efficiency of fuzzing but cannot resolve
the basic problem in fuzzing.

3.2. Dynamic analysis techniques

Dynamic analysis techniques are used to obtain dynamic in-
formation on the running program to help generate the new
sample. This information includes symbolic expressions, the
executed path, taint information on the sample and codes.
These techniques are implemented in the monitor in Fig. 1.
Three widely used dynamic analysis techniques include
dynamic symbolic execution (Cha et al., 2012; Chipounov
et al., 2011; Godefroid et al., 2008), coverage feedback (Kargén
and Shahmehri, 2015; Rawat et al., 2017; Stephens et al., 2016;
Zalewski, 2016; Google 2017a, 2017b; LLVM-admin team, 2017)
and dynamic taint analysis (Drewry and Ormandy, 2007; Ganesh
et al., 2009; Haller et al., 2013; Neugschwandtner et al., 2015;
Newsome and Song, 2005; Rawat et al., 2017; Wang et al., 2010).

3.2.1. Dynamic symbolic execution
Dynamic symbolic execution (Cha et al., 2012; Chipounov
et al., 2011; Godefroid et al., 2008) is a method to determine
the possible inputs of a program. This task is accomplished by
using symbolic values as an input to execute the program, at
the same time collecting symbolic constraints on the path set,
then inverting a constraint to generate a new path; finally, a
new input is generated by the SMT solver (Bjørner and Phan,
2014; De Moura and Bjørner, 2008; Ganesh and Dill, 2007) on
this new constraint set, which represents a new path. Fuzzing
systems using dynamic symbolic execution may have

122 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

different aims, e.g., to maximize code coverage (Campana, 2009;
Caselden et al., 2013; Godefroid et al., 2005, 2008) or to focus
on a specific location (Haller et al., 2013; Neugschwandtner
et al., 2015) that is more likely to be vulnerable.

The main limitation of dynamic symbolic execution-
based fuzzing is path explosion. When symbolic execution
addresses real-world applications, exponential symbolic ex-
pressions will be impossible for the constraint solver to solve.
Executing all feasible program paths cannot scale to large re-
alistic programs. Thus, flaws that lie in the deeper logic of a
program are usually discovered by manual analysis (Bucur, 2015;
Chen et al., 2013; DeMott, 2014).

3.2.2. Coverage feedback
The coverage feedback technique (Zalewski, 2016; Google 2017a,
2017b) is used to generate inputs for traversing different paths
in the program execution. It uses instrumentation (Bhansali
et al., 2006; Luk et al., 2005; Nethercote and Seward, 2007;
Bruening, 2010; Paradyn, 2017) to gain path coverage informa-
tion on the running program. If a new path is generated, the
current sample is added to the candidate seed set from which
one seed will be chosen to mutate in the next loop; other-
wise, it is discarded. With this coverage feedback technique,
the fuzzing proceeds in a direction that constantly improves
the path coverage.

Coverage-guided fuzzing (Kargén and Shahmehri, 2015;
Rawat et al., 2017; Stephens et al., 2016; Zalewski, 2016; Google
2017a, 2017b; LLVM-admin team, 2017) is more efficient than
random fuzzing (Hocevar, 2010; Miller et al., 1990) due to its
feedback mechanism. However, the generation of test cases to
pass complex checks in the application is still challenging for
this fuzzer, and the feedback loop used by coverage-guided
fuzzing does not relate application behaviour to the input struc-
ture to improve input generation.

3.2.3. Dynamic taint analysis
Dynamic taint analysis (Drewry and Ormandy, 2007; Ganesh
et al., 2009; Haller et al., 2013; Neugschwandtner et al., 2015;
Newsome and Song, 2005; Rawat et al., 2017; Wang et al., 2010)
is used to infer the structural properties of input data and which
offsets in the input influence the branch conditions. This in-
formation can be used to efficiently choose and mutate the
seeds. Dynamic taint analysis executes the target program by
feeding it input data with tags, which can be used to specify
how the program uses the input data and which program el-
ements were tainted by the data. Dynamic taint analysis can
be combined with dynamic symbol execution (Wang et al., 2010)
and with random mutation (Ganesh et al., 2009) to improve the
precision of fuzzing.

Dynamic taint analysis can track and detect the explicit
propagation and misuse of tainted data in the memory by moni-
toring the program, but it has the problems of under-tainting
and over-tainting (Kang et al., 2011). Under-tainting is a type
of error in which values that should be marked as tainted are
not, and over-tainting is a type of error in which too many
values are marked as tainted.

3.3. Static analysis techniques

Static analysis includes control flow analysis (Kinder et al., 2009;
Sparks et al., 2007) and data flow slices (Tip, 1994; Weiser, 1979,

1981, 1982). Both techniques are used to efficiently locate, lead
execution to, and verify possible vulnerabilities.

A control flow graph (Kinder et al., 2009; Sparks et al., 2007)
is a directed graph in which the nodes represent basic blocks,
and the edges represent control flow paths. Control flow in-
formation acts as a map that leads the program execution
towards the potentially vulnerable spot. Data flow slices (Tip,
1994; Weiser, 1979, 1981, 1982) extract the parts of a program
that potentially affect the values computed at some point of
interest, gathering statements and control predicates by way
of a forward or backward traversal of the program’s control flow
graph (Kinder et al., 2009; Sparks et al., 2007) or program de-
pendence graph (Ferrante et al., 1987; Kuck et al., 1981). Data
flow slices (Tip, 1994; Weiser, 1979, 1981, 1982), which relate
to the statement triggering the vulnerability, can be used to
identify possible vulnerabilities.

The undecidability (Landi, 1992) of static analysis hinders
the precise provision of dynamical memory allocations and
complex data structures. Although static analysis often pro-
duces false positive results, it can be combined with other
approaches to obtain highly valuable preprocessing information.

3.4. Other

Machine learning (Dietterich, 1997) is the science of leading
computers to act without being explicitly programmed. Broadly,
three types of machine learning algorithms exist: supervised
learning (Caruana and Niculescu-Mizil, 2006), unsupervised
learning (Barlow, 1989), and reinforcement learning (Bhatnagar
et al., 1998).

A supervised learning (Caruana and Niculescu-Mizil, 2006)
algorithm consists of a target variable to be predicted from a
given set of independent variables. Using this set of vari-
ables, the algorithm can generate a function that maps inputs
to desired outputs. For example, if we want to generate a model
to predict whether all the codes in a path are vulnerable or
not, we use several parameters as inputs: lines of codes in the
path, whether a specific type of code is present or not, whether
the memory or registers related to the specific code are tainted
or not, whether a specific function is invoked or not, etc. In
addition, the output is whether the codes are vulnerable or not.
An unsupervised learning (Barlow, 1989) algorithm has no target
or outcome variable to predict. A typical example of unsuper-
vised learning is clustering, which purpose is to gather similar
things together. A reinforcement learning (Bhatnagar et al., 1998)
algorithm learns from past experience and tries to capture the
best possible knowledge to make accurate business decisions.

Artificial neural networks (Koprinkova-Hristova et al., 2015)
are a commonly applied type of machine learning algorithm.
An artificial neural network generally comprises a collection
of interconnected artificial neurons that perform some com-
putation on input patterns and create output patterns. Artificial
neural networks are adaptive systems capable of modifying their
internal structure, typically the weights between nodes in the
network, allowing them to be used for a variety of function ap-
proximation problems such as classification, regression, feature
extraction and content-addressable memory.

Recently, increasing numbers of works have used machine
learning, especially artificial neural network techniques, for
program analysis and synthesis, including array sorting and

123c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

copying (Kurach et al., 2015; Reed and De Freitas, 2015), en-
coding input-output examples (Parisotto et al., 2016), repairing
syntax errors in programs (Bhatia and Singh, 2016; Gupta
et al., 2017; Pu et al., 2016), optimizing assembly programs (Bunel
et al., 2016), intelligently guiding fuzzing (Godefroid et al., 2017),
predicting vulnerabilities (Grieco et al., 2016; Yamaguchi et al.,
2011), malware analysis (Santos et al., 2013), and attack de-
tection (Forrest et al., 1996; Rawat et al., 2005; Tandon and Chan,
2003).

Machine learning will become a promising technique in the
field of program analysis and security detection. Although
machine learning has made great progress in other fields, its
combination with fuzzing is still in the initial stage. It only yields
a moderate improvement of fuzzing at present.

4. Representative fuzzing systems

The first fuzzing system was implemented by Miller et al. (1990)
to analyse the reliability of UNIX tools. Since then, fuzzing tech-
niques have been increasingly applied to software security
detection. Increasing numbers of systems introduce various
techniques to improve the efficiency of fuzzing. The develop-
ment of fuzzing can be divided into 4 main stages: before 2005,
2006–2010, 2011–2015, and 2016–2017. We will introduce some
representative fuzzing systems from each of these time periods.

4.1. Before 2005

Before 2005, fuzzing was still in the early stages of develop-
ment. The fuzzing techniques in this period consist mainly of
black-box fuzzing using random mutation. The first fuzzing
system (Miller et al., 1990) is a typical random fuzzing ap-
proach. SPIKE (Bradshaw, 2010) and Peach (Peachtec, 2017)
introduced the grammar representation technique to improve
the quality of the generated samples for the random fuzzing
(Hocevar, 2010; Miller et al., 1990). Fuzzing with dynamic sym-
bolic execution, for example CUTE (Sen et al., 2005), began to
be applied later in this period.

The first fuzzing system (Miller et al., 1990) was con-
structed in 1990. It tests the target program by inputting random
strings to see whether the program crashes or not, then analy-
ses the crashes. This fuzzer contains two programs: fuzz and
ptyjig. Fuzz generates a stream of random characters to be con-
sumed by the target program, and ptyjig automatically tests
interactive utilities by writing scripts. The evaluation showed
that crashes occurred in more than 24% of the 90 different utility
programs in seven versions of UNIX. This fuzzing system pro-
vides a new approach to detect vulnerabilities in programs, but
it has poor testing results for programs with complex struc-
tured input data because most of the mutated inputs are
rejected in the early steps of the program execution either at
parsing or at the checksum verification process.

SPIKE (Bradshaw, 2010) provides different APIs to generate
input data, checksum and routines with less effort. It speci-
fies complex formatted input data as nested data blocks that
satisfy the relations of the different fields. The fields may be
of varying types, e.g., int, float, or string. It calculates the length
and checksum data to pass the integrity checking at the very

beginning of the program execution and uses routines to fa-
cilitate handling network code and common marshalling
routines. To extend the data format or modify the testing rou-
tines, the source code must be modified, which increases the
difficulty of extension.

Peach (Peachtec, 2017) is a model-based fuzzer that uses
Peach Pit to enhance the extensibility of fuzzing for different
types of input structures and protocols. Peach Pit separates the
description of the input structure and testing routines from
the engine of the fuzzer. It consists of a series of XML files in-
cluding DataModel (Peachtec, 2014a) and StateModel (Peachtec,
2014b). DataModel describes the types of data chunks and fields
and the relationships between them. Each chunk, which con-
tains the type, length, data, checksum, etc., describes an
independent data structure.The field is used to describe a single
type of data. StateModel describes the state transitions of the
protocol and how to run the tests. Peach (Peachtec, 2017) per-
forms fuzzing according to the routines specified by StateModel,
mutates the seed according to DataModel, and uses monitor
agents that check if and when the program has crashed. Peach
(Peachtec, 2017) supports fixups to repair checksums and trans-
formers for encoding, decoding and compression. The source
code of Peach (Peachtec, 2017) does not need to be modified
to support different programs and protocols. Extension re-
quires only the addition of Peach Pit, but Peach (Peachtec, 2017)
cannot adjust the seed selection and mutation strategies ac-
cording to the runtime information of the program due to its
black-box property.

CUTE (Sen et al., 2005) addresses the problem that the sat-
isfaction of constraints in symbolic execution may be
undecidable when programs have pointer operations. It sepa-
rates pointer constraints from integer constraints to make
symbolic execution lightweight and the constraint solving pro-
cedure efficient. Specifically, CUTE (Sen et al., 2005) represents
all inputs with a logical input map that maps logical ad-
dresses to values and runs the code concretely and symbolically
based on it. CUTE (Sen et al., 2005) collects constraints and
negates individual ones to generate a new logical input map.
It then resolves the map, generates a new input using SMT
solver (Bjørner and Phan, 2014; De Moura and Bjørner, 2008;
Ganesh and Dill, 2007), and repeats this process to explore fea-
sible execution paths as extensively as possible. CUTE (Sen
et al., 2005) can find bugs in actual programs but is limited to
programs with source code, and path explosion is its primary
challenge.

4.2. 2006–2010

Between 2006 and 2010, symbolic execution-based fuzzing was
well developed, and the taint analysis technique was used in
fuzzing systems. KLEE (Cadar et al., 2008) and SAGE (Godefroid
et al., 2008) improve the efficiency of fuzzing by expanding the
fuzzing coverage with symbolic execution. This approach is
limited by the well-known path explosion problem affecting
symbolic execution.This problem becomes evident as the com-
plexity of a binary increases. TaintScope (Wang et al., 2010),
BuzzFuzz (Ganesh et al., 2009) and GWF (Godefroid et al., 2008)
improve the efficiency of fuzzing by restricting the search space.
TaintScope (Wang et al., 2010) aims to pass the checksum code
by using symbolic execution and taint analysis. BuzzFuzz

124 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

(Ganesh et al., 2009) aims at library and system calls in the pro-
grams using taint analysis. GWF (Godefroid et al., 2008) restricts
the search space to valid inputs to explore deeper paths using
symbolic execution (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008) and grammar rep-
resentation (Banks et al., 2006; Röning et al., 2002; Peachtec,
2017; Bradshaw, 2010; Fitblip, 2016).

KLEE (Cadar et al., 2008) uses search heuristics on sym-
bolic execution to achieve high code coverage. It compiles
the source code of the program to the LLVM (Lattner and
Adve, 2004) byte code, an RISC-like virtual instruction set.
KLEE (Cadar et al., 2008) executes the byte code using sym-
bolic values as inputs. If the execution branches based on a
symbolic value, KLEE (Cadar et al., 2008) will follow both
branches, maintaining a set of constraints on each path that
keep execution on that path. If a path terminates or hits a
bug, a new input will be generated by solving the current
constraints. Experimentation showed that KLEE (Cadar et al.,
2008) could achieve higher code coverage and found several
serious bugs in some applications (Meyering, 2017), but only
open-source applications.

SAGE (Godefroid et al., 2008) is a successful commercial
fuzzing system that uses symbolic execution (Cadar et al., 2008;
Cha et al., 2012; Chipounov et al., 2011; Godefroid et al., 2008)
on binary programs. It uses a generational search algorithm
to improve fuzzing on applications that accept highly struc-
tured inputs by attempting to sweep through all feasible
execution paths of the program. In the generational search al-
gorithm, SAGE (Godefroid et al., 2008) collects the path
constraints for the execution flow when processing the input
seed file. Each of the constraints in the constraint set is negated
and combined with the constraints that preceded it. If the re-
sulting constraint set is solvable by calling the constraint solver
(Bjørner and Phan, 2014; De Moura and Bjørner, 2008; Ganesh
and Dill, 2007), a new input set is generated and scored based
on the increase in code coverage. All of the generated seeds
are stored in a candidate seed file pool, and the candidate with
the highest score is selected from the seed pool and used as
the seed to begin the next round of fuzzing. SAGE (Godefroid
et al., 2008) has already discovered many bugs in Windows ap-
plications, several of which are potentially exploitable, but SAGE
(Godefroid et al., 2008) has difficulty finding bugs in some ap-
plications with complex checksum codes, which may lead to
path explosion.

TaintScope (Wang et al., 2010) is an automatic dynamic sym-
bolic execution (Cadar et al., 2008; Cha et al., 2012; Chipounov
et al., 2011; Godefroid et al., 2008) fuzzing system used in com-
bination with dynamic taint analysis (Ganesh et al., 2009; Haller
et al., 2013; Neugschwandtner et al., 2015; Wang et al., 2010)
to pass the checksum mechanism employed in the target
program. It identifies checksum fields in the input data using
combined concrete and symbolic execution techniques such
as Tupni (Cui et al., 2008), and employs a branch profiling tech-
nique to locate checksum-based integrity checks accurately,
bypass such checks by altering the control flow, and automati-
cally fix the checksum values in the generated inputs using
dynamic symbolic execution (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008).TaintScope (Wang
et al., 2010) found 27 undiscovered vulnerabilities in several
commercial software programs, including Adobe Acrobat, Google

Picasa, Microsoft Paint and ImageMagick (ImageMagick Studio
LLC, 2017).

BuzzFuzz (Ganesh et al., 2009) improves the mutation ef-
ficiency by mutating only the tainted section of the input. It
selects library and system calls as attack points and uses
dynamic taint analysis (Ganesh et al., 2009; Haller et al., 2013;
Neugschwandtner et al., 2015; Wang et al., 2010) to automati-
cally locate regions of the original seed input files that influence
the values used at these attack points, then mutate these iden-
tified regions of the original seed input to obtain new test input.
The newly generated test input tends to pass the initial input
parsing code due to preserving the syntactic structure of the
original seed, so it can trigger bugs hidden in the deep layer
of the program. BuzzFuzz (Ganesh et al., 2009) cannot test a
binary program directly because of the interaction of its dynamic
taint analysis technique with the source code of the program.

GWF (Godefroid et al., 2008) enhances dynamic symbolic
execution-based fuzzing (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008) with a grammar-
based specification of valid inputs. It uses symbolic execution
to directly generate the grammar-based constraints (Röning
et al., 2002), whose satisfiability is checked by a custom
grammar-based constraint solver. It completes a partial set of
token constraints to form a fully defined valid input, so it can
explore deeper paths by restricting the search space to valid
inputs. An evaluation comparing it with dynamic symbolic
execution-based fuzzing (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008), random fuzzing
(Hocevar, 2010; Miller et al., 1990) and grammar-based fuzzing
(Banks et al., 2006; Röning et al., 2002; Peachtec, 2017; Bradshaw,
2010; Fitblip, 2016) showed that GWF (Godefroid et al., 2008)
had an advantage in code coverage using fewer tests.

4.3. 2011–2015

Between 2011 and 2015, the development of fuzzing systems
had three main characteristics. First, coverage-guided fuzzing
(Böhme et al., 2016, 2017; Zalewski, 2016; Google 2017a, 2017b)
was widely used in academic and industrial fields; the repre-
sentative system is AFL (Zalewski, 2016). Second, different
scheduling algorithms (Böhme et al., 2016, 2017; Householder
and Foote, 2012; Woo et al., 2013) were used in fuzzing. CERT
BFF (Householder and Foote, 2012) and FuzzSim (Woo et al.,
2013) model fuzzing as Bernoulli trials (Saperstein, 1973).
SYMFUZZ (Cha et al., 2015) computes an optimal mutation ratio
for fuzzing using taint analysis (Ganesh et al., 2009; Haller
et al., 2013; Neugschwandtner et al., 2015; Wang et al., 2010).
Third, a trend developed to improve fuzzing efficiency by com-
bining multiple techniques. Dowser (Haller et al., 2013) and
BORG (Neugschwandtner et al., 2015) direct fuzzing to spe-
cific points in the program that may be vulnerable by combining
static analysis (Kinder et al., 2009; Sparks et al., 2007; Tip, 1994;
Weiser, 1979, 1981, 1982), taint propagation (Ganesh et al., 2009;
Haller et al., 2013; Neugschwandtner et al., 2015; Wang et al.,
2010) and symbolic execution (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008).

AFL (Zalewski, 2016) is a brute-force fuzzer that automati-
cally generates interesting test cases that are relatively likely
to trigger new internal states in the target program. When
fuzzing starts, AFL (Zalewski, 2016) loads user-supplied test cases

125c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

into a queue, takes the next input file from the queue and at-
tempts to trim test cases that do not alter the measured
behaviour of the program to minimize the number of test cases,
repeatedly mutating the file using a balanced and well-
researched variety of traditional fuzzing strategies (Lcamtuf,
2014) in which most of the work is done by using determin-
istic strategies first followed by random stacked modification
strategies and finally test case splicing. If any of the gener-
ated mutations result in the recording of a new state transition
by the instrumentation (Bhansali et al., 2006; Luk et al., 2005;
Nethercote and Seward, 2007; Bruening, 2017; Paradyn, 2017),
AFL (Zalewski, 2016) adds the mutated output as a new entry
in the queue, then loops to take the next input file from the
queue. AFL (Zalewski, 2016) substantially improves the func-
tional coverage of the fuzzed code and has modest performance
overhead. Some notable vulnerabilities and other uniquely in-
teresting bugs have been found by AFL (Lcamtuf, 2017).

CERT BFF (Householder and Foote, 2012) improves random
fuzzing by using a fuzzing parameter selection algorithm
based on modelling the fuzzing process as a sequence of
Bernoulli trials (Saperstein, 1973). First, given a set of seed
files/ranges, each file is assigned an initial crash density,
which is the empirically measured number of unique crashes
found while fuzzing the file divided by the number of trials
attempted. CERT BFF (Householder and Foote, 2012) next cal-
culates the chosen probability distribution for each file/range
on the set of seed files and chooses a file/range according to
the distribution, fuzzes the file for an interval of iterations,
calculates the upper 95% confidence interval on the observed
crash density for that file/range, and updates the probability
distribution of the seed file, and repeats this process continu-
ously. An evaluation showed that CERT BFF (Householder
and Foote, 2012) markedly improved the efficiency of detect-
ing errors in FFmpeg (Niedermayer, 2017) over basic parameter
selection methods.

FuzzSim (Woo et al., 2013) also considers fuzzing as inde-
pendent Bernoulli trials (Saperstein, 1973). It models the fuzzing
process as a weighted coupon collectors problem with unknown
weights to capture the decrease in the probability of finding
a new bug and designs online algorithms using the condition
in the no free lunch theorem (Wolpert and Macready, 1997) to
maximize the number of bugs found in a fuzz campaign. An
evaluation showed an average improvement of 1.5 times over
BFF (Householder and Foote, 2012) in the efficiency of discov-
ering unique application errors.

SYMFUZZ (Cha et al., 2015) specifies an effective mutation
ratio to improve the mutation strategy by using taint analy-
sis. It analyses the execution trace for a given program-seed
pair to detect dependencies among the bit data of an input by
leveraging taint analysis and specifies an effective mutation
ratio, which is related to the fuzzing efficiency, then per-
forms traditional random mutational fuzzing with the specified
mutation ratio. SYMFUZZ (Cha et al., 2015) does not rely on SMT
solvers (De Moura and Bjørner, 2008; Ganesh and Dill, 2007) but
uses a dependency relation to compute an optimal mutation
ratio for the program-seed pair. An evaluation showed that an
average of 38.6% more bugs were found than by the three pre-
vious fuzzers, including BFF (Householder and Foote, 2012), ZZuf
(Hocevar, 2010) and AFL (Zalewski, 2016), over 8 applications
in the same fuzzing time.

Dowser (Haller et al., 2013) effectively uses static analysis
(Kinder et al., 2009; Sparks et al., 2007; Tip, 1994; Weiser, 1979,
1981, 1982), symbolic execution (Cadar et al., 2008; Cha et al.,
2012; Chipounov et al., 2011; Godefroid et al., 2008) and
taint analysis (Ganesh et al., 2009; Haller et al., 2013;
Neugschwandtner et al., 2015; Wang et al., 2010) in combina-
tion to detect underflow (Taborn and Yuan, 1996) and overflow
(Sidiroglou et al., 2005) vulnerabilities. It leverages static analy-
sis to identify possible locations for buffer overflow bugs within
loops and ranks them based on a metric that evaluates the com-
plexity of the access (Gegick et al., 2008; Nguyen and Tran, 2010;
Shin and Williams, 2011; Zimmermann et al., 2010), confirms
the input bytes that influence these interesting cases of array
access by taint analysis, then symbolizes these bytes and starts
a symbolic execution process, solves the constraint paths that
are most likely to lead to underflow and overflow, and finally
generates the input to be verified. Dowser (Haller et al., 2013)
works well in real programs. Two of the bugs found by Dowser
(Haller et al., 2013) were previously undocumented buffer over-
flows in FFmpeg (Niedermayer, 2017) and the poppler PDF
rendering library.

BORG (Neugschwandtner et al., 2015) guides symbolic ex-
ecution to target instructions that are prone to triggering
overread vulnerabilities (Wang et al., 2015) with a combina-
tion of static analysis (Kinder et al., 2009; Sparks et al., 2007;
Tip, 1994; Weiser, 1979, 1981, 1982) and taint analysis (Ganesh
et al., 2009; Haller et al., 2013; Neugschwandtner et al., 2015;
Wang et al., 2010). It obtains a control flow graph (Kinder
et al., 2009; Sparks et al., 2007) using static analysis, then refines
it with knowledge from dynamically generated execution traces
to generate an accurate model of the program’s intra- and inter-
procedural control flow graph, which is then used to compute
a distance metric between the program’s current execution path
and a target instruction. The target instructions are sensitive
functions, such as memcpy and strcpy, if their parameters are
tainted. The paths are ranked by the distance metric and used
to guide symbolic execution (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008) to focus on the
execution paths that are most relevant to the target instruc-
tion. BORG (Neugschwandtner et al., 2015) detected overread
vulnerabilities (Wang et al., 2015) in several complex server ap-
plications and libraries, including lighttpd (Bohler, 2017), FFmpeg
(Niedermayer, 2017) and ClamAV (Talos, 2017b).

4.4. 2016–2017

From 2016 to 2017, the development of fuzzing has shown three
main characteristics. The first characteristic is the emer-
gence of multiple fuzzing systems that improved AFL (Zalewski,
2016), such as AFLFast (Böhme et al., 2016), AFLGo (Böhme
et al., 2017), Skyfire (Wang et al., 2017), VUzzer (Rawat et al.,
2017) and Steelix (Li et al., 2017). The second is the continued
trend of combining multiple techniques, such as in MoWF
(Pham et al., 2016), Driller (Stephens et al., 2016),VUzzer (Rawat
et al., 2017) and Steelix (Li et al., 2017). The third is the intro-
duction of machine learning techniques into fuzzing, such as
in Learn&Fuzz (Godefroid et al., 2017).

AFLFast (Böhme et al., 2016) improves AFL (Zalewski, 2016)
by leveraging the Markov algorithm (Norris, 1998). It models
the probability that fuzzing a seed that exercises program path

126 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

i generates a seed that exercises path j with the transition prob-
ability pij in a Markov chain (Norris, 1998). AFLFast (Böhme et
al., 2016) implements a power schedule to assign an energy
that is inversely proportional to the density of the stationary
distribution. When the seed is fuzzed for the first time, a very
low energy is assigned. Every time the seed is chosen there-
after, exponentially more inputs are generated up to a certain
bound.This process can rapidly approach the minimum energy
required to discover a new path. AFLFast (Böhme et al., 2016)
exposed 3 previously uncovered vulnerabilities that were not
detected by AFL (Zalewski, 2016) and exposed 6 previously un-
covered vulnerabilities 7 times faster than AFL (Zalewski, 2016)
in 24 hours.

AFLGo (Böhme et al., 2017) is an AFL-based fuzzing system
using a simulated annealing (Kirkpatrick et al., 1983) power
schedule to generate inputs with the objective of efficiently
reaching a given set of target program locations. The simu-
lated annealing-based power schedule gradually assigns more
energy to seeds that are closer to the target locations while
reducing energy for seeds that are further away. The target
program locations are identified by setting a changed state-
ment in patch testing (Böhme et al., 2013; Marinescu and Cadar,
2013) and by setting a method call in the stack-trace in crash
reproduction (Jin and Orso, 2012; Pham et al., 2015). In an ex-
periment, AFLGo (Böhme et al., 2017) found 39 bugs in several
security-critical projects such as LibXML (Reese, 2017) and
LibMing (Reczey, 2017).

Skyfire (Wang et al., 2017) uses a PCSG (probabilistic context-
sensitive grammar) to generate high-quality samples from the
vast number of existing samples. A PCSG has a pool of pro-
duction rules to generate seed samples. In particular, each
production rule is associated with a context in which the rule
can be applied, which can help the generated seeds to pass
syntax parsing and semantic checking. In addition, each rule
is associated with the probability that the production rule is
applied under the given text, which can guide subsequent seed
selection and reduce seed redundancy. Skyfire (Wang et al.,
2017) leverages the learned PCSG to generate seed inputs, then
feeds the initial samples and the samples generated as seeds
of AFL (Zalewski, 2016) to the fuzzing process. This method
can be used to discover deep bugs beyond the syntax parsing
and semantic checking stage. Skyfire (Wang et al., 2017) dis-
covered 19 new memory corruption bugs and 32 denial-of-
service bugs from the JavaScript and rendering engine of
Internet Explorer 11.

VUzzer (Rawat et al., 2017) guides the fuzzing to penetrate
more deeply into the application by calculating the fitness of
each input. First, it extracts control flow features to specify the
weight of each basic block. Specifically, it sets a negative value
for a basic block that contains error-handling code.Then, it cal-
culates the weighted sum of the executed basic blocks as the
path fitness. Next, it extracts data flow features to accurately
determine where and how to mutate such inputs by using taint
analysis, then continually guides the fuzzing to the path with
the high fitness score to detect the vulnerabilities hidden deep
in the program. An evaluation showed that VUzzer (Rawat
et al., 2017) quickly found several existing and new bugs when
compared with AFL (Zalewski, 2016) on DARPA Grand Chal-
lenge binaries (DARPA, 2016), the LAVA dataset (Dolan-Gavitt
et al., 2016) and a set of real-world applications.

Steelix (Li et al., 2017) improves the penetration power of
AFL (Zalewski, 2016) using coverage, magic bytes comparison
progress and location information. It locates the magic bytes
in the inputs and performs mutations to match the magic bytes
by using lightweight static analysis (Kinder et al., 2009; Sparks
et al., 2007; Tip, 1994; Weiser, 1979, 1981, 1982) and binary in-
strumentation (Bhansali et al., 2006; Luk et al., 2005; Nethercote
and Seward, 2007; Bruening, 2010; Paradyn, 2017). If a muta-
tion makes progress towards matching magic bytes, Steelix (Li
et al., 2017) will keep the new test input together with the po-
sition of the byte that was just mutated. When Steelix (Li
et al., 2017) mutates the new test input, it will use a local ex-
haustive mutation to try all the possibilities of the two
neighbour bytes. Using this method, Steelix (Li et al., 2017) can
efficiently match the magic bytes and penetrate deeper than
AFL (Zalewski, 2016) into program execution. Steelix (Li et al.,
2017) has been evaluated on the LAVA-M dataset (Dolan-Gavitt
et al., 2016), DARPA CGC (DARPA, 2016) sample binaries and five
real-life programs and outperformed AFL (Zalewski, 2016) with
respect to code coverage and bug detection capability.

Driller (Stephens et al., 2016) combines the speediness of
coverage-guided techniques and the reasoning ability of sym-
bolic execution techniques. The use of a coverage-guided
technique (Böhme et al., 2016, 2017; Zalewski, 2016; Google
2017a, 2017b) can improve the path coverage in the program.
Symbolic execution (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008) can reason the
complex checks on specific input between compartments.These
complex checks are difficult to pass by using the coverage-
guided tools (Böhme et al., 2016, 2017; Zalewski, 2016; Google
2017a, 2017b). Driller (Stephens et al., 2016) uses the coverage-
guided tool AFL (Zalewski, 2016) to explore the application until
it reaches the complex checks on specific input between com-
partments.Then, it invokes its symbolic execution engine, Angr
(Shellphish, 2017), to analyse the application and generate a
seed to pass the check. Then, Driller (Stephens et al., 2016)
returns to performing fuzzing using AFL (Zalewski, 2016). Driller
(Stephens et al., 2016) was used to test 126 binaries from the
DARPA Cyber Grand Challenge Qualifying Event (DARPA, 2016)
and found 77 crashes, whereas 68 crashes were found using
only AFL (Zalewski, 2016).

MoWF (Pham et al., 2016) uses an input model (Peachtec,
2017) to relieve the difficulty of using symbolic execution to
solve the constraints generated from codes that contain
complex integrity checks. It cracks all initial files and places
their data components inside a fragment pool, identifies crucial
branches by their dependence on a data field in a given file
of enumerable type using taint analysis (Ganesh et al., 2009;
Haller et al., 2013; Neugschwandtner et al., 2015; Wang et al.,
2010), then learns the type of the referenced data field using
the input model, adds a data chunk obtained from the frag-
ment pool or removes the data chunk if the data field is of
enumerable type, re-establishes the integrity of the file using
fixup and transformers supplied by Peach (Peachtec, 2017)
framework, and finally employs selective symbolic execution
(Chipounov et al., 2011) to explore the crucial branches that
are exercised depending on specific values of the data
fields with a guide to critical locations that may expose a
vulnerability if exercised by an appropriate input. These
critical locations, where program instructions may trigger

127c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

divide-by-zero and null-pointer dereference vulnerabilities, are
identified by lightweight analysis using IDAPro (Hex-Rays SA,
2017). MoWF (Pham et al., 2016) can find bugs hidden in the
depths of a program and exposed 13 vulnerabilities in 8 large
program binaries, whereas traditional white-box fuzzing (Pham
et al., 2015) and model-based black-box fuzzing (Peachtec, 2017)
exposed less than half as many.

Learn&Fuzz (Godefroid et al., 2017) presents a novel algo-
rithm that intelligently guides where to fuzz input data using
a seq2seq (Cho et al., 2014; Sutskever et al., 2014) neural
network-based technique. This approach is used for learning
the model of PDF objects over the set of PDF object charac-
ters given a large corpus of objects.The seq2seq network model
learns contexts of arbitrary length to predict the next charac-
ter sequence. It learns a generative model to generate new PDF
objects using a set of input and output sequences in an un-
supervised manner. The input sequences are the characters
sequences extracted from PDF objects. The output sequences
are obtained by shifting the input sequences by one position.
Experimental results showed that this approach improved the
coverage of the PDF parser compared to random fuzzing.

5. Analysis and comparison of fuzzing
systems

Since the emergence of the first fuzzing system, many fuzzing
systems have been constructed. These systems introduce dif-
ferent techniques to improve the efficiency of fuzzing. Some
of these systems use the same technique to achieve certain
goals, and some systems use different techniques to achieve
the same goal. Some correlations exist among these systems,
techniques and goals. In this section, we will compare these
fuzzing systems from different perspectives: the timeline, sym-
bolic execution technique (Cadar et al., 2008; Cha et al., 2012;
Chipounov et al., 2011; Godefroid et al., 2008), coverage feed-
back (Böhme et al., 2016, 2017; Zalewski, 2016; Google, 2017a,
2017b), grammar representation (Röning et al., 2002; Peachtec,
2016; Bradshaw, 2010) and taint analysis (Ganesh et al., 2009;
Haller et al., 2013; Neugschwandtner et al., 2015; Wang et al.,
2010).

5.1. The timeline of fuzzing system development

Fuzzing techniques have continued to develop for more than
20 years since 1990, when Miller et al. (1990) implemented the
first fuzzing system. Fuzzing has evolved from the original
black-box fuzzing (Miller et al., 1990; Peachtec, 2017; Fitblip, 2016;
Helin, 2017) to white-box (Cadar et al., 2008; Godefroid et al.,
2005, 2008; Haller et al., 2013) and grey-box (Böhme et al., 2016,
2017; Zalewski, 2016; Google 2017a, 2017b) fuzzing with the com-
bination of multiple techniques, including grammar
representation (Banks et al., 2006; Röning et al., 2002; Peachtec,
2017; Bradshaw, 2010; Fitblip, 2016), static analysis (Kinder
et al., 2009; Sparks et al., 2007; Tip, 1994; Weiser, 1979, 1981,
1982), taint analysis (Ganesh et al., 2009; Haller et al., 2013;
Neugschwandtner et al., 2015; Wang et al., 2010), scheduling
algorithms (Böhme et al., 2016, 2017; Householder and Foote,
2012; Woo et al., 2013), and machine learning (Godefroid et al.,

2017). Fig. 3 lists the various techniques used in well-known
fuzzing tools or systems in chronological order (Fig. 4) (Fig. 5).

(1) The complexity of techniques

As the picture above shows, all kinds of techniques are in-
creasingly combined with each other over time, so fuzzing
systems are becoming increasingly complex. In the early stage,
single fuzzing techniques such as fuzz (Miller et al., 1990;
Wikipedia, 2017b), KLEE (Cadar et al., 2008), SAGE (Godefroid
et al., 2008), AFL (Zalewski, 2016) were used; in later fuzzing
systems, fuzzing was combined with one additional tech-
nique, such as in Peach (Peachtec, 2017), GWF (Godefroid et al.,
2008), TaintScope (Wang et al., 2010), and AFLFast (Böhme
et al., 2016); and in recent years, combinations of multiple tech-
niques have arisen, such as Dowser (Haller et al., 2013), BORG
(Neugschwandtner et al., 2015), and MoWF (Pham et al., 2016).
Before 2013, fuzzing systems were mainly based on one or two
techniques. After 2013, fuzzing systems were based on com-
binations of multiple techniques.

A newly emerged technique will be constantly combined
with other fuzzing techniques to achieve certain effects: for
example, taint analysis was combined with random muta-
tion to produce BUZZFUZZ (Ganesh et al., 2009) and SYMFUZZ
(Cha et al., 2015) and with dynamic symbolic execution to
produce TaintScope (Wang et al., 2010), Dowser (Haller et al.,
2013), and BORG (Neugschwandtner et al., 2015). Dynamic sym-
bolic execution was combined with grammar representation
to produce GWF (Godefroid et al., 2008) and MoWF (Pham
et al., 2016) and with taint analysis to produce TaintScope (Wang
et al., 2010), Dowser (Haller et al., 2013) and BORG
(Neugschwandtner et al., 2015). Scheduling algorithms were
combined with random mutation to produce BFF (Householder
and Foote, 2012) and FuzzSim (Woo et al., 2013) and with cov-
erage guides to produce AFLGo (Böhme et al., 2017) and AFLFast
(Böhme et al., 2016).

(2) The same combinations of techniques

Some fuzzing systems use the same combination of tech-
niques shown in the diagram above but with different
implementations or for different application domains.

AFL (Zalewski, 2016) and syzkaller (Google, 2017b) use
coverage-guided techniques in different application domains:
AFL (Zalewski, 2016) is a generic type of fuzzing tool, whereas
syzkaller (Google, 2017b) is used for detecting operating system
vulnerabilities.

PROTOS (Röning et al., 2002), SPIKE (Bradshaw, 2010) and
Peach (Peachtec, 2017) are grammar-based fuzzers. PROTOS
(Röning et al., 2002) uses simplified syntax to describe proto-
col interactions. SPIKE (Bradshaw, 2010) provides users with a
programming interface to generate the input data. In Peach
(Peachtec, 2017), the user is required to write the Peach Pit files
to mutate seeds or to directly generate inputs.

Both FuzzSim (Woo et al., 2013) and BFF (Householder and
Foote, 2012) combine random mutation with scheduling algo-
rithms, which contain many more algorithms. BFF (Householder
and Foote, 2012) uses an algorithm based on statistical theory
to automatically select the seed files and the proportion of the
files to randomize. FuzzSim (Woo et al., 2013) uses a weighted

128 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

Fig. 3 – Fuzzing Technique Evolution Diagram.

129
c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
7
5

(2
0
1
8
)
1
1
8
–
1
3
7

random algorithm with the fixed-time rate belief metric to
improve the efficiency of fuzzing.

5.2. Comparison of fuzzing systems

To understand the differences among different fuzzing systems
in depth, we compare fuzzing systems in terms of four aspects,
including dynamic symbolic execution, coverage feedback,
grammar representation and taint analysis.

5.2.1. Dynamic symbolic execution
The symbolic execution technique has been widely used in
fuzzing systems. KLEE (Cadar et al., 2008), SAGE (Godefroid

et al., 2008), S2E (Chipounov et al., 2011), Mayhem (Cha et al.,
2012), GWF (Godefroid et al., 2008),TaintScope (Wang et al., 2010),
Dowser (Haller et al., 2013), BORG (Neugschwandtner et al., 2015),
MoWF (Pham et al., 2016) and Driller (Stephens et al., 2016) are
representative examples. We will compare these fuzzing
systems in terms of path explosion, search strategies, sup-
ported bug types, the need or lack thereof for source code, and
offline or online execution.

5.2.1.1. Path explosion. The main hazard of symbolic execu-
tion is path explosion, which causes three problems. The first
is that it occupies a large amount of memory space.The second
is that it increases the complexity of constraint solving. The

Fig. 4 – Different Method Alleviating Path Explosion in Fuzzing Systems.

Fig. 5 – Comparison Between Fuzzing Systems in Different Angles.

130 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

third is that it increases the number of constraint expres-
sions resulting from execution on different paths. The existing
systems have alleviated these three problems through differ-
ent techniques.

To reduce memory usage, KLEE (Cadar et al., 2008), Mayhem
(Cha et al., 2012), S2E (Chipounov et al., 2011) and BORG
(Neugschwandtner et al., 2015) use State Merging (Avgerinos
et al., 2014; Bugrara and Engler, 2013; Kuznetsov et al., 2012)
to reduce the number of states in memory. Mayhem (Cha
et al., 2012), BORG (Neugschwandtner et al., 2015) and SAGE
(Godefroid et al., 2008) transfer the state from memory to disk.

To reduce the complexity of constraint solving, SAGE
(Godefroid et al., 2008) and BORG (Neugschwandtner et al., 2015)
use loop-guard pattern matching rules to identify a con-
straint that defines the number of iterations of input-dependent
loops during dynamic symbolic execution, then set new con-
straints representing the pre- and post-loop conditions to
summarize sets of executions of that loop. KLEE (Cadar et al.,
2008) and Dowser (Haller et al., 2013) use several methods to
simplify the constraint expressions, including expression re-
writing, constraint set simplification, implied value
concretization, constraint independence and a counter-
example cache.

To decrease the number of constraint expressions, various
fuzzing systems lead the symbolic execution to a certain target.
TaintScope (Wang et al., 2010) identifies checksum fields in input
instances and accurately locates checksum-based integrity
checks by using a branch profiling technique, then alters the
control flow to bypass such checks, which increase the number
and complexity of symbolic expressions. GWF (Godefroid et al.,
2008), BORG (Neugschwandtner et al., 2015) and MoWF (Pham
et al., 2016) reduce constraint expressions by pruning from the
search space any paths that are exercised by invalid inputs.
Driller (Stephens et al., 2016) mitigates path explosion using
concolic execution only to satisfy complex checks at the tran-
sition between compartments in the application. MoWF (Pham
et al., 2016), BORG (Neugschwandtner et al., 2015) and Dowser
(Haller et al., 2013) concentrate symbolic execution on code that
might trigger special vulnerabilities.

5.2.1.2. Other comparisons. In addition to the techniques of
dealing with path explosion, we also compare fuzzing systems
in terms of their search strategy, whether they focus on speci-
fied vulnerabilities, whether they need source code or not, and
their categories of symbolic executors.

The search strategy is the way the symbolic execution is
guided. Mayhem (Cha et al., 2012), S2E (Chipounov et al., 2011),
SAGE (Godefroid et al., 2008) and GWF (Godefroid et al., 2008)
adopt heuristic strategies to achieve high code coverage, and
KLEE (Cadar et al., 2008) adds a random strategy. BORG
(Neugschwandtner et al., 2015) and Dowser (Haller et al., 2013)
guide the execution to suspected vulnerability locations that
have been statically analysed before execution. The symbolic
execution of TaintScope (Wang et al., 2010) focuses on the check-
sum code. MoWF (Pham et al., 2016) searches the space in which
it prunes paths that are exercised by invalid, malformed inputs.
Driller (Stephens et al., 2016) targets the point where AFL
(Zalewski, 2016) is unable to identify inputs to search new paths.

MoWF (Pham et al., 2016), BORG (Neugschwandtner et al.,
2015) and Dowser (Haller et al., 2013) can only find the speci-

fied type of vulnerability, whereas other systems can detect all
the vulnerabilities that crash programs. MoWF (Pham et al.,
2016) aims at divide-by-zero and null-pointer dereference vul-
nerabilities, whereas BORG (Neugschwandtner et al., 2015) aims
at overread vulnerabilities, and Dowser (Haller et al., 2013) aims
at buffer overflow vulnerabilities.

Both KLEE (Cadar et al., 2008) and Dowser (Haller et al., 2013)
need source code because they are based on the LLVM (Lattner
and Adve, 2004) framework, which is used to compile source
code into intermediate codes (Lattner and Adve, 2004) and
perform static analysis on these intermediate codes, while other
systems can test binary programs.

Dynamic symbolic execution (Cadar et al., 2008; Cha et al.,
2012; Chipounov et al., 2011; Godefroid et al., 2008; Haller
et al., 2013; Neugschwandtner et al., 2015; Pham et al., 2016;
Wang et al., 2010) can be divided into three main categories
(Cha et al., 2012): offline execution, which concretely runs a
single execution path and then symbolically executes it; online
execution, which attempts to execute all possible paths in a
single run; and hybrid symbolic execution, which alternates
between online and offline executions. KLEE (Cadar et al., 2008),
MoWF (Pham et al., 2016), S2E (Chipounov et al., 2011), BORG
(Neugschwandtner et al., 2015) and Dowser (Haller et al., 2013)
adopt an online mode. TaintScope (Wang et al., 2010), SAGE
(Godefroid et al., 2008) and GWF (Godefroid et al., 2008) adopt
an offline mode. Mayhem (Cha et al., 2012) and Driller (Stephens
et al., 2016) adopt a hybrid mode.

5.2.2. Coverage feedback
AFL (Zalewski, 2016), AFLFast (Böhme et al., 2016),VUzzer (Rawat
et al., 2017), Skyfire (Wang et al., 2017), AFLGo (Böhme et al.,
2017) and Steelix (Li et al., 2017) use coverage feedback. AFL
(Zalewski, 2016) uses a code instrumentation technique
(Bhansali et al., 2006; Luk et al., 2005; Nethercote and Seward,
2007; Bruening, 2010; Paradyn, 2017) to identify inputs that
proceed through new paths in program execution.These inputs
are used as quality seeds for the next round of fuzzing. This
approach can significantly improve the path coverage and the
probability of finding vulnerabilities.

AFLGo (Böhme et al., 2017), AFLFast (Böhme et al., 2016),
Steelix (Li et al., 2017) and Skyfire (Wang et al., 2017) and VUzzer
(Rawat et al., 2017) are based on AFL (Zalewski, 2016). AFLGo
(Böhme et al., 2017) guides the fuzzing to the locations iden-
tified by setting a changed statement in patch testing. Steelix
(Li et al., 2017) uses lightweight static analysis (Kinder et al.,
2009; Sparks et al., 2007; Tip, 1994; Weiser, 1979, 1981, 1982)
and instrumentation (Bhansali et al., 2006; Luk et al., 2005;
Nethercote and Seward, 2007; Bruening, 2010; Paradyn, 2017)
to add comparative progress information in feedback. This in-
formation helps the fuzzer obtain the location of magic bytes
in the test inputs and perform mutations to match the magic
bytes efficiently. AFLFast (Böhme et al., 2016) uses a power
scheduling strategy, which is based on a Markov chain model
(Norris, 1998), to assign the most fuzzing energy to paths in
low-density regions.

Skyfire (Wang et al., 2017) improves the efficiency of fuzzing
by providing high-quality samples to AFL (Zalewski, 2016). It
learns a PCSG from a vast number of existing samples, then
leverages the learned grammar to generate well-distributed
input. VUzzer (Rawat et al., 2017) generates samples more

131c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

intelligently by adding control flow (Kinder et al., 2009; Sparks
et al., 2007) and data flow features (Tip, 1994; Weiser, 1979, 1981,
1982) to the feedback to help discover deeply rooted bugs.
Control flow (Kinder et al., 2009; Sparks et al., 2007) is used to
prioritize and deprioritize certain paths by assigning weights
to basic blocks. Data flow (Tip, 1994; Weiser, 1979, 1981, 1982)
is used to infer the relation between the structural properties
of the input and the branch conditions.

5.2.3. Grammar representation
SPIKE (Bradshaw, 2010), Peach (Peachtec, 2017), Skyfire (Wang
et al., 2017) and GWF (Godefroid et al., 2008) use grammar rep-
resentation to generate inputs with complex format in order
to discover deeply rooted bugs, but the implementation methods
are different. SPIKE (Bradshaw, 2010) provides different APIs to
specify input data with complex format as nested data blocks
that satisfy the relations between different fields.

Peach (Peachtec, 2017) and MoWF (Pham et al., 2016) specify
input data by constructing a series of XML files, called Peach
Pit, which are written manually. Peach Pit can describe the types
of data chunks and fields and the relationships between them.
Peach (Peachtec, 2017) uses Peach Pit to mutate the seed file
or directly generate the test input, while MoWF (Pham et al.,
2016) uses Peach Pit to explore the branches that are exer-
cised depending on the presence of specific chunks.

Skyfire (Wang et al., 2017) does not need to use APIs or write
XML files manually to obtain the input format. It can auto-
matically generate format information by learning from a large
number of sample files. GWF (Godefroid et al., 2008) de-
scribes the format information as grammar-based constraints
that are generated directly by symbolic execution. SPIKE
(Bradshaw, 2010), Peach (Peachtec, 2017) and GWF (Godefroid
et al., 2008) require domain knowledge of the input format, but
Skyfire (Wang et al., 2017) does not.

5.2.4. Taint analysis
BUZZFUZZ (Ganesh et al., 2009), TaintScope (Wang et al., 2010),
Dowser (Haller et al., 2013), BORG (Neugschwandtner et al., 2015),
SYMFUZZ (Cha et al., 2015) and VUzzer (Rawat et al., 2017) all
use taint analysis. BUZZFUZZ (Ganesh et al., 2009) and SYMFUZZ
(Cha et al., 2015) combine taint analysis with random varia-
tion. BUZZFUZZ (Ganesh et al., 2009) uses taint analysis to locate
input regions that influence values used at key program attack
points and then mutates the data in these identified regions
of the original inputs. SYMFUZZ (Cha et al., 2015) automati-
cally finds an optimal mutation ratio for mutational fuzzing
based on the input-bit dependence inference, which is ob-
tained by symbolic analysis. SYMFUZZ (Cha et al., 2015) uses
taint analysis to reduce the cost of symbolic analysis on each
basic block.

TaintScope (Wang et al., 2010), Dowser (Haller et al., 2013)
and BORG (Neugschwandtner et al., 2015) combine taint analy-
sis with dynamic symbolic execution. TaintScope (Wang et al.,
2010) uses taint analysis to identify which bytes in an input
are used in security-sensitive operations and then modifies
those bytes. Dowser (Haller et al., 2013) and BORG
(Neugschwandtner et al., 2015) perform dynamic taint analy-
sis to reduce the amount of symbolic input.They identify which
parts of the input influence memory access in the target lo-
cation and then symbolize these parts for dynamic symbolic

execution. Both find only specific categories of bug. Dowser
(Haller et al., 2013) aims at buffer overflow vulnerabilities, and
BORG (Neugschwandtner et al., 2015) aims at buffer overread
vulnerabilities.

VUzzer (Rawat et al., 2017) performs dynamic taint analy-
sis to obtain information on which offsets in the input are used
at several branch conditions and what values are used as branch
constraints. This information is added to the feedback sent to
the mutator to generate new inputs.

6. Future directions

In this section, we will discuss the possible future research di-
rections of fuzzing techniques on the basis of analysing different
fuzzing techniques and fuzzing systems. We will discuss the
application of different techniques in fuzzing systems in terms
of three aspects: techniques used in fuzzing systems, tech-
niques newly introduced into fuzzing systems, and techniques
not used in fuzzing systems.

6.1. Techniques used in fuzzing systems

We can see from Sections 4.3 and 4.4 that the development
of fuzzing techniques has entered an era of combining differ-
ent techniques. With analysis of the advantages and
disadvantages of the existing techniques, different combina-
tions of techniques may provide new ideas for improving the
effectiveness of fuzzing in the future. For example, we can
reduce the number of fields to be symbolized and determine
where to perform symbolic execution (Cadar et al., 2008; Cha
et al., 2012; Chipounov et al., 2011; Godefroid et al., 2008) by
incorporating grammar representation (Banks et al., 2006;
Röning et al., 2002; Peachtec, 2017; Bradshaw, 2010; Fitblip, 2016).
First, we symbolize all the fields in the input data, perform sym-
bolic execution (Cadar et al., 2008; Cha et al., 2012; Chipounov
et al., 2011; Godefroid et al., 2008), and analyse certain special
fields, such as checksum fields. In the symbolic trace, we mark
the code position where the special field is used for the last
time. Then, we begin the second symbolic execution at the
marked position without symbolizing the special field, gener-
ate partial data from symbolic expressions using the SMT solver
(Bjørner and Phan, 2014; De Moura and Bjørner, 2008; Ganesh
and Dill, 2007), and compute the special fields with the help
of grammar representation techniques (Banks et al., 2006;
Röning et al., 2002; Peachtec, 2017; Bradshaw, 2010; Fitblip, 2016).
This method can alleviate the problem of path explosion in
the symbolic execution by reducing the symbolic expres-
sions produced by calculating checksum data and other
complicated computation, so it can improve code coverage
because the samples can access the deeper code hidden behind
the checksum code.

6.2. Techniques newly introduced into fuzzing systems

Currently, machine learning (Dietterich, 1997) has penetrated
various fields and shows extraordinarily good results. Papers
in the last two years describe the attempts of researchers to
combine machine learning with fuzzing techniques (Godefroid

132 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

et al., 2017).This trend will continue in the future. For example,
machine learning can be used to identify the potentially dan-
gerous paths and sections in the program by learning from
paths and sections in many programs that hide vulnerabili-
ties or in a program into which we add some vulnerabilities
using tools, e.g., LAVA (Dolan-Gavitt et al., 2016), or to help
choose a mutation strategy after learning the effects of using
different mutation strategy before. These mutation strategies
may include which seed to choose, which section in the seed
to mutate, and the strategy by which to mutate these sec-
tions. Deep integration between fuzzing techniques and
machine learning will increase the efficiency of fuzzing and
even lead to a breakthrough in this field.

6.3. Techniques not used in fuzzing systems

Some techniques not currently used in fuzzing systems might
nevertheless improve the fuzzing efficiency, for example, PSO
(particle swarm optimization) (Kennedy, 2011). Solving a large
number of constraint expressions often presents difficulty in
symbolic execution. The symbolic expressions can be consid-
ered as a set of equations, and the solution to the equations
is the input data that can be executed along the path that gen-
erates the symbolic expressions. A set of input data can
represent a particle, and the solution of all equations is ex-
pressed as the optimal problem in PSO (Kennedy, 2011). PSO
(Kennedy, 2011) can quickly approximate the optimal solu-
tion through mutual learning between particles. Thus, the
problem of symbolic resolution can be transformed into a
problem of finding the optimal solution by PSO (Kennedy, 2011).

7. Conclusion

Fuzzing efficiency has greatly improved in the past 20 years.
It has developed from the original black-box fuzzing to white-
box fuzzing and grey-box fuzzing, from mutational fuzzing to
generational fuzzing, and from no-feedback fuzzing to feed-
back fuzzing. Grammar-based fuzzing eases the difficulties in
fuzzing and digs out deep-seated vulnerabilities to some degree.
Dynamic symbolic execution transforms the process of fuzzing
into a mathematical problem. Taint analysis allows the fuzzing
process to provide an accurate impact of the input data on the
target program. Static analysis provides an excellent global view
for fuzzing. Path coverage-based fuzzing greatly improves the
efficiency of fuzzing. Machine learning now introduces a new
method to fuzzing. With the continuous deeper understand-
ing of the fuzzing process and the effective use of existing
techniques, fuzzing techniques will provide improved techni-
cal support for software security.

Acknowledgements

This work is supported by the National Natural Science Foun-
dation of China (No. 61502536).

R E F E R E N C E S

Avgerinos T, Rebert A, Cha SK, Brumley D. Enhancing symbolic
execution with veritesting. In: Proceedings of the 36th
international conference on software engineering. ACM; 2014.
p. 1083–94.

Babić D, Martignoni L, McCamant S, Song D. Statically-directed
dynamic automated test generation. In: Proceedings of the
2011 international symposium on software testing and
analysis. ACM; 2011. p. 12–22.

Banks G, Cova M, Felmetsger V, Almeroth K, Kemmerer R, Vigna
G. Snooze: toward a stateful network protocol fuzzer. In: ISC,
vol. 4176. Springer; 2006. p. 343–58.

Barlow HB. Unsupervised learning. John Wiley & Sons, Ltd; 1989.
Bastani O, Sharma R, Aiken A, Liang P. Synthesizing program

input grammars. In: Proceedings of the 38th ACM SIGPLAN
conference on programming language design and
implementation. ACM; 2017. p. 95–110.

Berry DA, Fristedt B. Bandit problems: sequential allocation of
experiments (monographs on statistics and applied
probability), vol. 12. Springer; 1985.

Bhansali S, Chen WK, Jong SD, Edwards A, Murray R, Chau J.
Framework for instruction-level tracing and analysis of
program executions. In: International conference on virtual
execution environments. 2006. p. 154–63.

Bhatia S, Singh R. Automated correction for syntax errors in
programming assignments using recurrent neural networks;
2016. arXiv preprint arXiv:160306129.

Bhatnagar S, Prasad H, Prashanth L. Reinforcement learning.
Springer Int 1998;11(5):126–34.

Bjørner N, Phan AD. νz-maximal satisfaction with z3. SCSS
2014;30:1–9.

Bohler S. Lighttpd; 2017. Available from: http://www.lighttpd.net.
[Accessed 6 October 2017].

Böhme M, Oliveira B, Roychoudhury A. Regression tests to expose
change interaction errors. In: Proceedings of the 2013 9th
joint meeting on foundations of software engineering. ACM;
2013. p. 334–44.

Böhme M, Pham VT, Nguyen MD, Roychoudhury A. Directed
greybox fuzzing. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS17). 2017.

Böhme M, Pham VT, Roychoudhury A. Coverage-based greybox
fuzzing as Markov chain. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security. ACM; 2016. p. 1032–43.

Bossert G. Netzob; 2017. Available from: https://www.netzob.org/.
[Accessed 6 October 2017].

Bradshaw S. SPIKE fuzzer platform; 2010. Available from:
http://resources.infosecinstitute.com/fuzzer-automation-
with-spike/. [Accessed 6 October 2017].

Bruening D. Dynamorio; 2017. Available from:
http://www.dynamorio.org. [Accessed 6 October 2017].

Bsharet. Kitty; 2017. Available from: https://github.com/cisco-sas/
kitty. [Accessed 6 October 2017].

Bucur S. Improving scalability of symbolic execution for software
with complex environment interfaces [Ph.D. thesis], École
Polytechnique Fédérale de Lausanne; 2015.

Bugrara S, Engler D. Redundant state detection for dynamic
symbolic execution. In: Proceedings of the 2013 USENIX
conference on annual technical conference. USENIX
Association; 2013. p. 199–212.

Bunel RR, Desmaison A, Mudigonda PK, Kohli P, Torr P. Adaptive
neural compilation. Adv Neural Inf Process Syst 2016;1444–52.

Cadar C, Dunbar D, Engler DR. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems
programs. In: OSDI, vol. 8. 2008. p. 209–24.

133c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0010
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0010
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0010
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0010
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0015
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0015
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0015
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0015
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0020
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0020
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0020
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0025
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0030
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0030
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0030
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0030
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0035
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0035
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0035
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0040
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0040
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0040
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0040
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0045
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0045
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0045
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0050
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0050
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0055
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0055
http://www.lighttpd.net
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0065
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0065
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0065
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0065
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0070
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0070
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0070
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0070
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0075
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0075
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0075
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0075
https://www.netzob.org/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0085
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0090
http://www.dynamorio.org
https://github.com/cisco-sas/kitty
https://github.com/cisco-sas/kitty
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0100
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0100
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0100
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0105
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0105
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0105
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0105
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0110
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0110
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0115
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0115
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0115

Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR. EXE:
automatically generating inputs of death. ACM Trans Inform
Syst Secur 2008;12(2):10.

Campana G. Fuzzgrind: un outil de fuzzing automatique. SSTIC
2009;213–29.

Caruana R, Niculescu-Mizil A. An empirical comparison of
supervised learning algorithms. In: International conference
on machine learning. 2006. p. 161–8.

Caselden D, Bazhanyuk A, Payer M, Szekeres L, McCamant S,
Song D. Transformation-aware exploit generation using a HI-
CFG. Tech. Rep.; California Univ Berkeley Dept of Electrical
Engineering and Computer Science; 2013.

Cha SK. OFuzz; 2017. Available from: https://github.com/sangkilc/
ofuzz. [Accessed 6 October 2017].

Cha SK, Avgerinos T, Rebert A, Brumley D. Unleashing mayhem
on binary code. In: Security and Privacy (SP), 2012 IEEE
symposium on. IEEE; 2012. p. 380–94.

Cha SK, Woo M, Brumley D. Program-adaptive mutational
fuzzing. In: Security and Privacy (SP), 2015 IEEE symposium
on. IEEE; 2015. p. 725–41.

Chen Y, Groce A, Zhang C, Wong WK, Fern X, Eide E, et al. Taming
compiler fuzzers. In: ACM SIGPLAN notices, vol. 48. ACM;
2013. p. 197–208.

Chipounov V, Kuznetsov V, Candea G. S2e: a platform for in-vivo
multi-path analysis of software systems. ACM SIGPLAN
Notices 2011;46(3):265–78.

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H, et al. Learning phrase representations using RNN
encoder-decoder for statistical machine translation; 2014.
arXiv preprint arXiv:14061078.

Choren M. BackFuzz; 2017. Available from: https://github.com/
localh0t/backfuzz. [Accessed 6 October 2017].

CIFASIS. QuickFuzz; 2017. Available from: http://quickfuzz.org/.
[Accessed 6 October 2017].

Cui W, Peinado M, Chen K, Wang HJ, Irun-Briz L. Tupni: automatic
reverse engineering of input formats. In: Proceedings of the
15th ACM conference on computer and communications
security. ACM; 2008. p. 391–402.

Daniel. Dizzy; 2017. Available from: https://github.com/ernw/
dizzy. [Accessed 6 October 2017].

DARPA. Cyber grand challenge; 2016. Available from: https://
www.darpa.mil/program/cyber-grand-challenge. [Accessed 6
October 2017].

De Moura L, Bjørner N. Z3: an efficient SMT solver. Tools
Algorithms Constr Anal Syst 2008;337–40.

DeMott J. Understanding how fuzzing relates to a vulnerability
like heartbleed; 2014. Available from: http://labs.bromium.
com/2014/05/14/understanding-how-fuzzing-relates-to-a-
vulnerability-like-heartbleed/. [Accessed 6 October 2017].

Dietterich TG. Machine-learning research. AI Mag 1997;18(4):97–
136.

Dolan-Gavitt B, Hulin P, Kirda E, Leek T, Mambretti A, Robertson
W, et al. Lava: large-scale automated vulnerability addition.
In: Security and Privacy (SP), 2016 IEEE symposium on. IEEE;
2016. p. 110–21.

Drewry W, Ormandy T. Flayer: exposing application internals.
WOOT 2007;7:1–9.

El-Sherei S. Wadi; 2017. Available from: https://github.com/
sensepost/wadi/. [Accessed 6 October 2017].

Ferrante J, Ottenstein KJ, Warren JD. The program dependence
graph and its use in optimization. ACM Trans Program Lang
Syst 1987;9(3):319–49.

Fewer S. Grinder; 2017. Available from: https://github.com/
stephenfewer/grinder. [Accessed 6 October 2017].

Fitblip. Suley fuzzer; 2016. Available from: https://github.com/
OpenRCE/sulley. [Accessed 6 October 2017].

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self
for unix processes. In: Proceedings of the 1996 IEEE

symposium on security and privacy, 1996. IEEE; 1996.
p. 120–8.

Francis P, Leon D, Minch M, Podgurski A. Tree-based methods for
classifying software failures. In: Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Symposium
on. IEEE; 2004. p. 451–62.

Ganesh V, Dill DL. A decision procedure for bit-vectors and
arrays. In: CAV, vol. 4590. Springer; 2007. p. 519–31.

Ganesh V, Leek T, Rinard M. Taint-based directed whitebox
fuzzing. In: Proceedings of the 31st international conference
on software engineering. IEEE Computer Society; 2009. p. 474–
84.

Gascon H. Pulsar. Available from: https://github.com/hgascon/
pulsar. [Accessed 6 October 2017].

Gegick M, Williams L, Osborne J, Vouk M. Prioritizing software
security fortification throughcode-level metrics. In:
Proceedings of the 4th ACM workshop on quality of
protection. ACM; 2008. p. 31–8.

Godefroid P, Kiezun A, Levin MY. Grammar-based whitebox
fuzzing. In: ACM SIGPLAN notices, vol. 43. ACM; 2008. p. 206–
15.

Godefroid P, Klarlund N, Sen K. Dart: directed automated random
testing. In: ACM SIGPLAN notices, vol. 40. ACM; 2005. p. 213–
23.

Godefroid P, Levin MY, Molnar DA. Automated whitebox fuzz
testing. In: NDSS, vol. 8. 2008. p. 151–66.

Godefroid P, Peleg H, Singh R. Learn&fuzz: machine learning for
input fuzzing; 2017. arXiv preprint arXiv:170107232.

Google. IOCTL; 2017. Available from: https://code.google.com/p/
ioctlfuzzer/. [Accessed 6 October 2017].

Google. Honggfuzz; 2017a. Available from: https://github.com/
google/honggfuzz. [Accessed 6 October 2017].

Google. Syzkaller; 2017b. Available from: https://github.com/
google/syzkaller. [Accessed 6 October 2017].

Google. Cluster fuzz; 2017c. Available from: https://github.com/
google/oss-fuzz/blob/master/docs/clusterfuzz.md. [Accessed
6 October 2017].

Grieco G, Grinblat GL, Uzal L, Rawat S, Feist J, Mounier L.
Toward large-scale vulnerability discovery using machine
learning. In: Proceedings of the sixth ACM conference
on data and application security and privacy. ACM; 2016.
p. 85–96.

Gupta R, Pal S, Kanade A, Shevade S. Deepfix: fixing common c
language errors by deep learning. In: AAAI. 2017. p. 1345–51.

Haller I, Slowinska A, Neugschwandtner M, Bos H. Dowsing for
overflows: a guided fuzzer to find buffer boundary violations.
In: USENIX security symposium. 2013. p. 49–64.

Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS.
Pacemakers and implantable cardiac defibrillators: software
radio attacks and zero-power defenses. In: Proceedings – IEEE
symposium on security and privacy. 2008. p. 129–42.

Hanford KV. Automatic generation of test cases. IBM Syst J
1970;9(4):242–57.

Hastings R, Joyce B. Purify: fast detection of memory leaks and
access errors. In: Proceedings of the Winter 1992 USENIX
conference. Citeseer; 1991.

Helin A. Radamsa; 2017. Available from: https://github.com/aoh/
radamsa. [Accessed 6 October 2017].

Hex-Rays SA. Ida; 2017. Available from: https://www.hex-
rays.com/products/ida/. [Accessed 6 October 2017].

Hocevar S. Zzuf; 2010. Available from: http://caca.zoy.org/
wiki/zzuf/. [Accessed 6 October 2017].

Holler C, Herzig K, Zeller A. Fuzzing with code fragments. In:
USENIX security symposium. 2012. p. 445–58.

Höschele M, Zeller A. Mining input grammars from dynamic
taints. In: Proceedings of the 31st IEEE/ACM international
conference on automated software engineering. ACM; 2016.
p. 720–5.

134 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0120
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0120
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0120
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0125
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0125
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0130
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0130
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0130
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0135
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0135
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0135
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0135
https://github.com/sangkilc/ofuzz
https://github.com/sangkilc/ofuzz
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0145
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0145
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0145
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0150
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0150
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0150
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0155
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0155
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0155
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0160
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0160
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0160
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0165
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0165
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0165
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0165
https://github.com/localh0t/backfuzz
https://github.com/localh0t/backfuzz
http://quickfuzz.org/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0180
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0180
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0180
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0180
https://github.com/ernw/dizzy
https://github.com/ernw/dizzy
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0195
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0195
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0200
http://labs.bromium.com/2014/05/14/understanding-how-fuzzing-relates-to-a-vulnerability-like-heartbleed/
http://labs.bromium.com/2014/05/14/understanding-how-fuzzing-relates-to-a-vulnerability-like-heartbleed/
http://labs.bromium.com/2014/05/14/understanding-how-fuzzing-relates-to-a-vulnerability-like-heartbleed/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0205
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0205
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0210
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0210
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0210
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0210
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0215
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0215
https://github.com/sensepost/wadi/
https://github.com/sensepost/wadi/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0225
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0225
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0225
https://github.com/stephenfewer/grinder
https://github.com/stephenfewer/grinder
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0240
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0240
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0240
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0240
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0245
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0245
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0245
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0245
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0250
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0250
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0255
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0255
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0255
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0255
https://github.com/hgascon/pulsar
https://github.com/hgascon/pulsar
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0265
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0265
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0265
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0265
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0270
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0270
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0270
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0275
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0275
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0275
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0280
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0280
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0285
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0285
https://code.google.com/p/ioctlfuzzer/
https://code.google.com/p/ioctlfuzzer/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0310
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0310
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0310
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0310
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0310
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0315
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0315
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0320
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0320
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0320
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0325
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0325
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0325
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0325
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0330
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0330
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0335
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0335
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0335
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://caca.zoy.org/wiki/zzuf/
http://caca.zoy.org/wiki/zzuf/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0355
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0355
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0360
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0360
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0360
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0360

Householder A. FOE; 2012. Available from: https://insights.sei.
cmu.edu/cert/2012/07/cert-failure-observation-engine-20-
released.html. [Accessed 6 October 2017].

Householder A. Dranzer; 2017. Available from: https://
github.com/CERTCC-Vulnerability-Analysis/dranzer.
[Accessed 6 October 2017].

Householder AD, Foote JM. Probability-based parameter selection
for black-box fuzz testing. Tech. Rep.; Carnegie-Mellon Univ
Pittsburgh PA Software Engineering INST; 2012.

ImageMagick Studio LLC. Imagemagick; 2017. Available from:
https://www.imagemagick.org. [Accessed 6 October 2017].

Jin W, Orso A. Bugredux: reproducing field failures for in-house
debugging. In: Software Engineering (ICSE), 2012 34th
International Conference on. IEEE; 2012. p. 474–84.

Jones D. Trinity; 2017. Available from: https://github.com/
kernelslacker/trinity. [Accessed 6 October 2017].

Kang MG, McCamant S, Poosankam P, Song D. Dta++: dynamic
taint analysis with targeted control-flow propagation. In:
NDSS. 2011.

Kargén U, Shahmehri N. Turning programs against each other:
high coverage fuzz-testing using binary-code mutation and
dynamic slicing. In: Proceedings of the 2015 10th joint
meeting on foundations of software engineering. ACM; 2015.
p. 782–92.

Kennedy J. Particle swarm optimization. In: Encyclopedia of
machine learning. Springer; 2011. p. 760–6.

Kettunen A. Nodefuzz; 2017. Available from: https://github.com/
attekett/NodeFuzz. [Accessed 6 October 2017].

Khanduri P. Diffy; 2017. Available from: https://github.com/
twitter/diffy. [Accessed 6 October 2017].

Kifetew FM, Tiella R, Tonella P. Generating valid grammar-based
test inputs by means of genetic programming and
annotated grammars. Empirical Softw Eng 2017;22(2):
928–61.

Kim SY, Cha S, Bae DH. Automatic and lightweight grammar
generation for fuzz testing. Comput Secur 2013;36:
1–11.

Kinder J, Zuleger F, Veith H. An abstract interpretation-based
framework for control flow reconstruction from binaries. In:
International workshop on verification, model checking, and
abstract interpretation. Springer; 2009. p. 214–28.

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated
annealing. Science 1983;220(4598):671–80.

Koprinkova-Hristova P, Mladenov V, Kasabov NK. Artificial neural
networks. Eur Urol 2015;40(1):245.

Koret J. Nightmare; 2017. Available from: https://github.com/
joxeankoret/nightmare. [Accessed 6 October 2017].

Kuck DJ, Kuhn RH, Padua DA, Leasure B, Wolfe M. Dependence
graphs and compiler optimizations. In: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on principles of
programming languages. ACM; 1981. p. 207–18.

Kurach K, Andrychowicz M, Sutskever I. Neural random-access
machines; 2015. arXiv preprint arXiv:151106392.

Kuznetsov V, Kinder J, Bucur S, Candea G. Efficient state merging
in symbolic execution. ACM SIGPLAN Notices 2012;47(6):193–
204.

Landi W. Undecidability of static analysis. ACM Lett Program
Lang Syst 1992;1(4):323–37.

Lattner C, Adve V. LLVM: a compilation framework for lifelong
program analysis & transformation. In: Proceedings of the
international symposium on code generation and
optimization: feedback-directed and runtime optimization.
IEEE Computer Society; 2004. p. 75.

Lcamtuf. AFL fuzzing strategies; 2014. Available from: https://
lcamtuf.blogspot.jp/2014/08/binary-fuzzing-strategies-what-
works.html. [Accessed 6 October 2017].

Lcamtuf. AFL bugs; 2017. Available from: http://lcamtuf.
coredump.cx/afl/. [Accessed 6 October 2017].

Li M. Passive Fuzz Framework OSX; 2017. Available from: https://
github.com/SilverMoonSecurity/PassiveFuzzFrameworkOSX.
[Accessed 6 October 2017].

Li Y, Chen B, Chandramohan M, Lin SW, Liu Y, Tiu A. Steelix:
program-state based binary fuzzing. In: Proceedings of the
2017 11th joint meeting on foundations of software
engineering. ACM; 2017. p. 627–37.

Lin Z, Zhang X. Deriving input syntactic structure from
execution. In: Proceedings of the 16th ACM SIGSOFT
international symposium on foundations of software
engineering. ACM; 2008. p. 83–93.

Linguaglossa D. Pyjfuzz; 2017. Available from: https://github.com/
mseclab/PyJFuzz. [Accessed 6 October 2017].

LLVM-admin team. Libfuzzer; 2017. Available from:
http://llvm.org/docs/LibFuzzer.html. [Accessed 6 October
2017].

Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, et al. Pin:
building customized program analysis tools with dynamic
instrumentation. In: ACM SIGPLAN notices, vol. 40. ACM; 2005.
p. 190–200.

Majumdar R, Xu RG. Directed test generation using symbolic
grammars. In: Proceedings of the twenty-second IEEE/ACM
international conference on automated software engineering.
ACM; 2007. p. 134–43.

Marinescu PD, Cadar C. KATCH: high-coverage testing of
software patches. In: Proceedings of the 2013 9th joint
meeting on foundations of software engineering. ACM; 2013.
p. 235–45.

Martignoni L. Kemufuzzer; 2017. Available from: https://
github.com/jrmuizel/kemufuzzer. [Accessed 6 October 2017].

Mendez X. Wfuzz; 2017. Available from: https://github.com/
xmendez/wfuzz. [Accessed 6 October 2017].

Meyering J. Coreutils; 2017. Available from: http://www.gnu.org/
software/coreutils/coreutils.html. [Accessed 6 October 2017].

Miller BP, Fredriksen L, So B. An empirical study of the reliability
of UNIX utilities. Commun ACM 1990;33(12):32–44.

Muench M, Stijohann J, Kargl F, Francillon A, Balzarotti D. What
you corrupt is not what you crash: challenges in fuzzing
embedded devices. In: Proceedings of the Network and
Distributed System Security Symposium (NDSS). 2018.

MWR Labs. Kernel fuzzer; 2017. Available from: https://
github.com/mwrlabs/KernelFuzzer. [Accessed 6 October
2017].

Nair R. Syntribos; 2017. Available from: https://github.com/
openstack/syntribos. [Accessed 6 October 2017].

Nethercote N, Seward J. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In: ACM SIGPLAN notices,
vol. 42. ACM; 2007. p. 89–100.

Neugschwandtner M, Milani Comparetti P, Haller I, Bos H. The
BORG: nanoprobing binaries for buffer overreads. In:
Proceedings of the 5th ACM conference on data and
application security and privacy. ACM; 2015. p. 87–97.

Newsham. Triforce afl; 2017. Available from: https://github.com/
nccgroup/TriforceAFL. [Accessed 6 October 2017].

Newsome J, Song D. Dynamic taint analysis: automatic detection,
analysis, and signature generation of exploit attacks on
commodity software. In: Proceedings of the 12th network and
distributed systems security symposium. Citeseer; 2005.

Nguyen VH, Tran LMS. Predicting vulnerable software
components with dependency graphs. In: Proceedings of the
6th international workshop on security measurements and
metrics. ACM; 2010. p. 3.

Niedermayer M. FFmpeg developers; 2017. Available from:
http://ffmpeg.org/. [Accessed 6 October 2017].

Norris J. Markov chains, Cambridge series in statistical and
probabilistic mathematics. Cambridge University Press; 1998.

Paradyn. Dyninst; 2017. Available from: http://www.dyninst.org.
[Accessed 6 October 2017].

135c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

https://insights.sei.cmu.edu/cert/2012/07/cert-failure-observation-engine-20-released.html
https://insights.sei.cmu.edu/cert/2012/07/cert-failure-observation-engine-20-released.html
https://insights.sei.cmu.edu/cert/2012/07/cert-failure-observation-engine-20-released.html
https://github.com/CERTCC-Vulnerability-Analysis/dranzer
https://github.com/CERTCC-Vulnerability-Analysis/dranzer
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0375
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0375
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0375
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0380
https://www.imagemagick.org
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0385
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0385
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0385
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0395
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0395
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0395
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0400
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0400
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0400
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0400
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0400
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0405
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0405
https://github.com/attekett/NodeFuzz
https://github.com/attekett/NodeFuzz
https://github.com/twitter/diffy
https://github.com/twitter/diffy
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0420
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0420
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0420
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0420
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0425
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0425
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0425
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0430
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0430
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0430
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0430
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0435
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0435
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0440
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0440
https://github.com/joxeankoret/nightmare
https://github.com/joxeankoret/nightmare
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0450
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0450
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0450
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0450
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0455
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0455
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0460
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0460
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0460
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0465
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0465
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0470
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0470
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0470
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0470
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0470
https://lcamtuf.blogspot.jp/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.jp/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.jp/2014/08/binary-fuzzing-strategies-what-works.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/SilverMoonSecurity/PassiveFuzzFrameworkOSX
https://github.com/SilverMoonSecurity/PassiveFuzzFrameworkOSX
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0490
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0490
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0490
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0490
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0495
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0495
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0495
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0495
https://github.com/mseclab/PyJFuzz
https://github.com/mseclab/PyJFuzz
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0505
http://llvm.org/docs/LibFuzzer.html
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0510
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0510
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0510
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0510
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0515
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0515
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0515
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0515
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0520
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0520
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0520
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0520
https://github.com/jrmuizel/kemufuzzer
https://github.com/jrmuizel/kemufuzzer
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
http://www.gnu.org/software/coreutils/coreutils.html
http://www.gnu.org/software/coreutils/coreutils.html
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0540
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0540
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0545
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0545
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0545
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0545
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/KernelFuzzer
https://github.com/openstack/syntribos
https://github.com/openstack/syntribos
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0560
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0560
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0560
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0565
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0565
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0565
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0565
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0575
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0575
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0575
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0575
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0580
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0580
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0580
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0580
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0585
http://ffmpeg.org/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0590
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0590
http://www.dyninst.org

Parisotto E, Mohamed A, Singh R, Li L, Zhou D, Kohli P.
Neurosymbolic program synthesis. arXiv preprint
arXiv:161101855 2016.

Peachtec. Datamodel; 2014a. Available from: http://community.
peachfuzzer.com/v3/DataModeling.html. [Accessed 6 October
2017].

Peachtec. Statemodel; 2014b. Available from: http://community.
peachfuzzer.com/v3/StateModel.html. [Accessed 6 October
2017].

Peachtec. Peach; 2017. Available from: http://www.peachfuzzer.
com/products/peach-platform. [Accessed 6 October 2017].

Peet C. Js fuzz; 2017. Available from: https://github.com/
connor4312/js-fuzz. [Accessed 6 October 2017].

Pham VT, Böhme M, Roychoudhury A. Model-based whitebox
fuzzing for program binaries. In: Proceedings of the 31st IEEE/
ACM international conference on automated software
engineering. ACM; 2016. p. 543–53.

Pham VT, Ng WB, Rubinov K, Roychoudhury A. Hercules:
reproducing crashes in real-world application binaries. In:
Proceedings of the 37th international conference on software
engineering, vol. 1. IEEE Press; 2015. p. 891–901.

Prado CG. Brundlefuzz; 2017. Available from: https://github.com/
carlosgprado/BrundleFuzz. [Accessed 6 October 2017].

Pu Y, Narasimhan K, Solar-Lezama A, Barzilay R. sk_p: a neural
program corrector for moocs. In: Companion proceedings of
the 2016 ACM SIG-PLAN international conference on systems,
programming, languages and applications: software for
humanity. ACM; 2016. p. 39–40.

Purdom P. A sentence generator for testing parsers. BIT
1972;12(3):366–75.

Rawat S, Gulati VP, Pujari AK. A fast host-based intrusion
detection system using rough set theory. In: Transactions on
rough sets IV. Springer; 2005. p. 144–61.

Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H. VUzzer:
application-aware evolutionary fuzzing. In: Proceedings of the
Network and Distributed System Security symposium (NDSS).
2017.

Reczey B. Libming; 2017. Available from: http://www.libming.org.
[Accessed 6 October 2017].

Reed S, De Freitas N. Neural programmer-interpreters; 2015.
arXiv preprint arXiv:151106279.

Reese B. LibXML; 2017. Available from: http://xmlsoft.org.
[Accessed 6 October 2017].

Regehr J. Csmith; 2017. Available from: https://github.com/
csmith-project/csmith. [Accessed 6 October 2017].

Röning J, Lasko M, Takanen A, Kaksonen R. Protos-systematic
approach to eliminate software vulnerabilities; 2002. Invited
presentation at Microsoft Research.

Rouf I, Miller R, Mustafa H, Taylor T, Oh S, Xu W, et al. Security
and privacy vulnerabilities of in-car wireless networks: a tire
pressure monitoring system case study. In: USENIX security
symposium, Washington, DC, USA, August 11-13, 2010,
proceedings. 2010. p. 323–38.

Santos I, Devesa J, Brezo F, Nieves J, Bringas PG. OPEM: a static-
dynamic approach for machine-learning-based malware
detection. In: International joint conference CISIS12-ICEUTE
12-SOCO 12 special sessions. Springer; 2013.
p. 271–80.

Saperstein B. On the occurrence of n successes within n
Bernoulli trials. Technometrics 1973;15(4):809–18.

Sen K, Marinov D, Agha G. CUTE: a concolic unit testing engine
for C. In: ACM SIGSOFT software engineering notes, vol. 30.
ACM; 2005. p. 263–72.

Serebryany K, Bruening D, Potapenko A, Vyukov D.
AddressSanitizer: a fast address sanity checker. In: USENIX
annual technical conference. 2012. p. 309–18.

Shaw ZA. Rfuzz; 2017. Available from: https://github.com/
zedshaw/rfuzz. [Accessed 6 October 2017].

Shellphish. Angr; 2017. Available from: https://github.com/angr/
angr. [Accessed 6 October 2017].

Shin Y, Williams L. An initial study on the use of execution
complexity metrics as indicators of software vulnerabilities.
In: Proceedings of the 7th international workshop on
software engineering for secure systems. ACM; 2011.
p. 1–7.

Shoshitaishvili Y, Wang R, Hauser C, Kruegel C, Vigna G.
Firmalice-automatic detection of authentication bypass
vulnerabilities in binary firmware. In: NDSS. 2015.

Sidiroglou S, Giovanidis G, Keromytis AD. A dynamic mechanism
for recovering from buffer overflow attacks. In: Information
Security, international conference, ISC 2005, Singapore,
September 20–23, 2005, proceeding. 2005. p. 1–15.

Sintra T. Filebuster; 2017. Available from: https://github.com/
henshin/filebuster. [Accessed 6 October 2017].

Slowinska A, Stancescu T, Bos H. Body armor for binaries:
preventing buffer overflows without recompilation. In:
USENIX annual technical conference. 2012. p. 125–37.

Smith D. Go-Fuzz; 2017. Available from: https://github.com/
google/gofuzz. [Accessed 6 October 2017].

Sparks S, Embleton S, Cunningham R, Zou C. Automated
vulnerability analysis: leveraging control flow for evolutionary
input crafting. ACSAC 2007;477–86.

Stallman RM, Pesch RH, Shebs S. Debugging with GDB; 2002.
Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, et al.

Driller: augmenting fuzzing through selective symbolic
execution. In: NDSS, vol. 16. 2016. p. 1–16.

Sutskever I, Vinyals O, Le QV. Sequence to sequence learning
with neural networks. In: Advances in neural information
processing systems. 2014. p. 3104–12.

Taborn MP, Yuan JK. Method and apparatus for detecting
underflow and overflow; 1996. Google Patents.

Talos C. FuzzFlow; 2017a. Available from: https://github.com/
talos-vulndev/FuzzFlow. [Accessed 6 October 2017].

Talos C. Clamav; 2017b. Available from: http://www.clamav.net/.
[Accessed 6 October 2017].

Tandon G, Chan PK. Learning rules from system call arguments
and sequences for anomaly detection. Tech Rep 2003.

Team MSECMSS. !exploitable; 2013. Available from:
http://msecdbg.codeplex.com. [Accessed 6 October 2017].

Tip F. A survey of program slicing techniques; 1994. Centrum
voor Wiskunde en Informatica.

Trull J. Regex-fuzzer; 2010. Available from: https://cloudblogs.
microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-
regex-fuzzer/. [Accessed 6 October 2017].

Wang J, Chen B, Wei L, Liu Y. Skyfire: data-driven seed generation
for fuzzing. In: 2017 IEEE symposium on security and privacy.
IEEE; 2017. p. 579–94.

Wang J, Zhao M, Zeng Q, Wu D, Liu P. Risk assessment of buffer
“heartbleed” over-read vulnerabilities. In: IEEE/IFIP
international conference on dependable systems and
networks. 2015. p. 555–62.

Wang T, Wei T, Gu G, Zou W. Taintscope: a checksum-aware
directed fuzzing tool for automatic software vulnerability
detection. In: Security and privacy (SP), 2010 IEEE symposium
on. IEEE; 2010. p. 497–512.

Weiser M. Program slicing. In: Proceedings of the 5th
international conference on software engineering. IEEE Press;
1981. p. 439–49.

Weiser M. Programmers use slices when debugging. Commun
ACM 1982;25(7):446–52.

Weiser MD. Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method;
1979. University of Michigan.

Wikipedia. Definition of software bug; 2017a. Available from:
https://en.wikipedia.org/wiki/Software_bug. [Accessed 6
October 2017].

136 c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0600
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0600
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0600
http://community.peachfuzzer.com/v3/DataModeling.html
http://community.peachfuzzer.com/v3/DataModeling.html
http://community.peachfuzzer.com/v3/StateModel.html
http://community.peachfuzzer.com/v3/StateModel.html
http://www.peachfuzzer.com/products/peach-platform
http://www.peachfuzzer.com/products/peach-platform
https://github.com/connor4312/js-fuzz
https://github.com/connor4312/js-fuzz
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0625
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0625
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0625
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0625
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0630
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0630
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0630
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0630
https://github.com/carlosgprado/BrundleFuzz
https://github.com/carlosgprado/BrundleFuzz
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0640
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0640
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0640
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0640
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0640
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0645
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0645
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0650
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0650
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0650
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0655
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0655
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0655
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0655
http://www.libming.org
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0665
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0665
http://xmlsoft.org
https://github.com/csmith-project/csmith
https://github.com/csmith-project/csmith
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0680
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0680
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0680
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0685
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0685
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0685
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0685
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0685
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0690
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0690
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0690
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0690
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0690
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0695
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0695
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0700
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0700
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0700
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0705
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0705
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0705
https://github.com/zedshaw/rfuzz
https://github.com/zedshaw/rfuzz
https://github.com/angr/angr
https://github.com/angr/angr
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0720
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0720
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0720
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0720
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0720
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0725
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0725
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0725
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0730
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0730
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0730
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0730
https://github.com/henshin/filebuster
https://github.com/henshin/filebuster
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0740
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0740
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0740
https://github.com/google/gofuzz
https://github.com/google/gofuzz
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0750
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0750
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0750
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0755
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0760
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0760
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0760
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0765
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0765
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0765
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0770
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0770
https://github.com/talos-vulndev/FuzzFlow
https://github.com/talos-vulndev/FuzzFlow
http://www.clamav.net/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0785
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0785
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0790
http://msecdbg.codeplex.com
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0795
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0795
https://cloudblogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
https://cloudblogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
https://cloudblogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0805
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0805
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0805
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0810
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0810
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0810
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0810
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0815
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0815
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0815
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0815
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0820
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0820
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0820
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0825
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0825
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0830
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0830
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0830
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0835
https://en.wikipedia.org/wiki/Software_bug

Wikipedia. The three tenets of cyber security; 2017b. Available
from: https://en.wikipedia.org/wiki/Vulnerability_
(computing). [Accessed 6 October 2017].

Wikipedia. Definition of embedded system; 2017c. https://
en.wikipedia.org/wiki/Embedded_system. [Accessed 6
October 2017].

Wolpert DH, Macready WG. No free lunch theorems for
optimization. IEEE Trans Evolution Comput 1997;1(1):
67–82.

Woo M, Cha SK, Gottlieb S, Brumley D. Scheduling black-box
mutational fuzzing. In: Proceedings of the 2013 ACM SIGSAC
conference on computer & communications security. ACM;
2013. p. 511–22.

Yamaguchi F, Lindner F, Rieck K. Vulnerability extrapolation:
assisted discovery of vulnerabilities using machine learning.
In: Proceedings of the 5th USENIX conference on offensive
technologies. USENIX Association; 2011. p. 13.

Zaddach J, Bruno L, Francillon A, Balzarotti D. AVATAR: a
framework to support dynamic security analysis of embedded
systems firmwares. In: Network and Distributed System
Security Symposium. 2014.

Zalewski M. American fuzzy lop; 2016. Available from: https://
github.com/mirrorer/afl. [Accessed 6 October 2017].

Zimmermann T, Nagappan N, Williams L. Searching for a needle
in a haystack: predicting security vulnerabilities for windows
vista. In: Software Testing, verification and validation (ICST),
2010 third International Conference on. IEEE; 2010.
p. 421–8.

Chen Chen is a doctoral student at the Beijing University of Posts
and Telecommunications. Her research field focuses on software
security detection and embedded system security detection.

Baojiang Cui is a doctor and a professor at the Beijing University
of Posts and Telecommunications. His research field includes
network and host security behaviour analysis, software security
detection, analysis of web/software and operating system secu-
rity defects, smart terminals and mobile internet security, and
internet of things security.

Jinxin Ma holds a doctoral degree and is an associate research fellow
at China Information Technology Security Evaluation Center. His
research field focuses on information safety.

Runpu Wu holds a master’s degree and is an associate research
fellow at China Information Technology Security Evaluation Center.
His research field focuses on information safety.

Jianchao Guo is a master’s degree candidate of the Beijing Uni-
versity of Posts and Telecommunications. Her research field focuses
on software security detection and embedded system security
detection.

Wenqian Liu is a master’s degree candidate of the Beijing Univer-
sity of Posts and Telecommunications. Her research field focuses
onsoftware security detection and embedded system security
detection.

137c om pu t e r s & s e cu r i t y 7 5 (2 0 1 8) 1 1 8 – 1 3 7

http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0840
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0850
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0850
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0850
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0855
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0855
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0855
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0855
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0860
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0860
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0860
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0860
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0865
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0865
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0865
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0865
https://github.com/mirrorer/afl
https://github.com/mirrorer/afl
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0875
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0875
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0875
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0875
http://refhub.elsevier.com/S0167-4048(18)30065-8/sr0875

	 A systematic review of fuzzing techniques
	 Introduction
	 Anatomy of a fuzzing system
	 The structure of a fuzzing system
	 The original fuzzing system
	 The extended fuzzing system

	 The classification of fuzzing
	 White-box, black-box and grey-box
	 Mutation-based and generation-based
	 Feedback and no-feedback

	 Fuzzing systems used in different targets

	 Fuzzing techniques
	 Sample generation techniques
	 Random mutation
	 Grammar representation
	 Scheduling algorithms

	 Dynamic analysis techniques
	 Dynamic symbolic execution
	 Coverage feedback
	 Dynamic taint analysis

	 Static analysis techniques
	 Other

	 Representative fuzzing systems
	 Before 2005
	 2006–2010
	 2011–2015
	 2016–2017

	 Analysis and comparison of fuzzing systems
	 The timeline of fuzzing system development
	 Comparison of fuzzing systems
	 Dynamic symbolic execution
	 Path explosion
	 Other comparisons

	 Coverage feedback
	 Grammar representation
	 Taint analysis

	 Future directions
	 Techniques used in fuzzing systems
	 Techniques newly introduced into fuzzing systems
	 Techniques not used in fuzzing systems

	 Conclusion
	 Acknowledgements
	 References

