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Abstract. Mobile apps nowadays are consuming and producing a mass
of sensitive data. In response, a wide variety of privacy protection tech-
niques and tools have been proposed since mobile users have the esca-
lating privacy concerns. However, only a few privacy protection schemes
consider how to thoroughly erase the runtime information of an app after
its execution. Various traceable vestiges, called execution footprints, are
kept by the device which could be used to steal and speculate user’s
privacy. We argue that a mobile operating system should not only estab-
lish sound isolation between different apps but also need to provide a
fine-grained execution footprint expunging mechanism to ensure using
an app confidentially. To achieve this target, Mist, a modified Android
OS, to generate fine-grained data expunging policies, is designed and
implemented. Mist is a lightweight ephemeral container, which does not
require the support of specialized hardware or operation mode and it will
be disposed of securely when in use apps. In this container, Mist per-
sistently tracks every message generated by the app and then it deletes
them during and after the execution. Experiments based on 200 apps
show that execution footprints still have been neglected by the Android
OS even after the app removal. By utilizing the expunging mechanism
Mist provided, those footprints are erased to guarantee a private and
confidential execution.

1 Introduction

The contradiction between forensics requirements and privacy protection has
brought to the public since the FBI-Apple encryption dispute has burst out.
Although robust cryptography schemes have been deployed to the mainstream
mobile operating systems (Android and iOS), the unceasing attempts keep being
made by investigators or attackers who try to break the protection. In particular
situation, merely exposing the truth that some specific apps (such as healthcare
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app, life-style apps, and apps strongly relevant to user’s privacy) have been
execution can lead to a grave infringement on the privacy of the device owner. To
refer individual behavior of the user, the primary sources of information exposure
are execution footprints, which are modifications of system status due to an
app’s execution. The execution of an app always changes the system status and
leaves an abundance of information on the device temporarily or permanently.
These modifications may reveal various kinds of information (e.g., the name of
the app) and can be used as digital evidence (e.g., whether a particular app has
executed on the device).

Unfortunately, mobile operating systems often fail to erase such footprints
to hide execution traces and protect user privacy. As a result, an experienced
analyst can indicate not only the identity of the app but also the related opera-
tions. Take Android, the most widely used mobile OS, as an example. We reveal
that except regular footprints such as files, many kinds of information, although
unobtrusive, still indicate the execution of real app. With a study of 100 favorite
Android apps mainly focusing on those related to Inter-Process Communication
(IPC) or interactions with the OS, we investigated how apps generate footprints,
and found When an app relies on intensive system services, some information will
unintentionally leak to the system without being noticed. Even if under specific
privacy protection enhancements, the surveillance state could still obtain data
through conducting brute-force decryption, and also deduce relevant information
from some encrypted but featured data. Also, we observe that Android does not
provide a cautious data expunging policy and execution footprints remain for
most apps even after the uninstallation.

To address this issue of data footprints, the critical steps include determin-
ing the sources where the execution footprints generate, and expunging remained
footprints thoroughly after the execution/uninstallation. In particular, to exe-
cute an app on Android without being perceived by malicious observations as
offline forensic analysis or online side-channel eavesdropping, a private mode, or
say a private execution of the apps, is demanded to conceal the performance
of the app and eliminate all those footprints left in the system. Private mode
is firstly implemented as a private browsing mode, a standard security feature
provided to prevent information leakage on modern web browsers such as Fire-
fox and Chrome. It ensures that personal information (e.g., browsing histories,
cookies, and cache information) are cleared once by the browsing session ends.
However, to anonymize the execution of an app on mobile device is much more
sophisticated. It involves a myriad of interactions with the OS such as file I/O
operation and API invoking with sensitive permission requirements. A system-
atical solution for this problem is expected to conceal the execution information
of specific apps.

To port such private execution function to Android, we design and implement
Mist, a modified Android OS that enables an ephemeral execution for universal
apps. With Mist, users can launch an app and execute it without being per-
ceived by a later forensic analysis, despite the skillful analyst that could fully
control the system and gain every aspect of the system information. During
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the ephemeral execution, the input and output of the app execution are man-
aged delicately by fine-grained monitoring policies of Mist. For instance, Mist
adopts a temporal partition encryption scheme to re-direct every file operation
to a secure and ephemeral container. Mist also determines how to control the
inter-process communication (IPC) during the app’s execution: when the app
generated data flow to the external environment, it either blocks the data flow
or labels the system service as a tainted process. After the execution, Mist
immediately sanitizes any possible leaked information. In this way, Mist proves
that no footprints remain after the execution and thus protects the privacy of
the user.

Compared with current privacy schemes on Android, Mist has the following
advantages: (1) Mist conducts a fine-grained footprint monitoring based on an
investigation of real-world Android devices and apps; (2) Mist implements a
lightweight ephemeral execution to expunge footprint comprehensively, and it
does not require the support of specialized hardware or operation mode (e.g.,
Trusted Execution Environment). To validate the reliability and usability of
Mist, we conduct experimental evaluation with 200 popular Android apps. The
evaluation first reveals many remaining data (according to the monitoring) as
footprints and then it utilizes a set of forensic analysis tools to check whether typ-
ical footprints can be detected if the app executes in Mist. The results demon-
strate that Mist expunges those footprints thoroughly against existing forensic
analyses. The evaluation also shows that the performance overhead of Mist is
acceptable for most application scenarios.

2 Footprint Expunging

The installation, execution, and uninstallation of an app modify the status of the
device temporarily or permanently. Such modifications are defined as execution
footprints if they can be used as digital evidences to refer specific behavior of the
user (e.g., whether a particular app has been executed on the device). Mobile
operating systems are expected to erase such footprints to hide execution traces
and protect user privacy. However, modern mobile OS such as Android fail to
achieve this target. In this section we first discuss the deficiency of Android
system on expunging execution footprint and then present our enhanced strategy
of practical footprint expunging.

2.1 Footprints of Android Apps

The Android OS provides a series of access control strategies to prove that each
app only executes in an isolated environment. Ideally, the OS should guarantee
that the status of the system keeps consistent whether an app has been installed
or not. Apparently, this is infeasible since many apps must register themselves
to the system to handle specific requests (e.g., write files to the disk and register
themselves to some system services). Thus, a practical solution is to execute an
uninstallation process and erase every vestige of the app. Nevertheless, current
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app uninstallation mechanism of Android does not guarantee such requirement.
As shown in Table 1, recent studies related to execution footprints indicated that
at least 11 items must be sanitized. Otherwise, each of them represents a class
of footprint that may help track specific user behavior.

Table 1. Representative footprints of Android

Item Footprint pattern

Memory [15,18,21–24,28] Kept in memory after the execution

Files [18–20,27,28] Written to flash memory in plaintext

IPC [8,32] Transferred through IPC

Process status [31,33] Identified by other processes

Battery usage App name kept after the execution

Network usage App name kept after the execution

Screen [14] Screenshot buffer captured by other apps or the system

Microphone [11] Sound captured by other apps or the system

Sensor [13,16] Sensor data captured by other apps or the system

Keyboard input [6] App identity referred by a third-party input method

System log App identity recorded in system log files

However, only by enumerating such items we cannot understand the foot-
print issue comprehensively. From the viewpoint of footprint origins, we classify
all execution fingerprints into four types and study them in a systematic way:

Footprint in Memory: Memory pages of an app process contain plenty of
sensitive information that may reveal the identity of their creator or even the
exact behavior of it [15,21,22,24]. For instance, distinguishable strings, code
segments, images, GUI layouts can be used to deduce certain user behavior.

Whereas, few app takes the initiative to actively erase used memory pages,
making most sensitive data left in memory even if the running process is termi-
nated. Android system does not consider this as an issue either, leaving a feasible
attack window for the advanced cold-boot attack [10].

Footprint on eMMC: Most Android devices store files in the flash memory
of embedded MultiMedia Card (eMMC). Files created by apps usually carry a
lot of relevant information: both the content and the metadata (e.g., file name,
directory structure) can be used as the evidence of app’s execution [19,27]. Once
an attacker obtains the device, he can directly visit this information through
dumping the partition image with forensic techniques (even if the partition is
encrypted, it is possible to recover the image through guessing the password [1]).
Unfortunately, Android lacks a secure data wiping mechanism and data written
to flash memory is difficult to be wiped securely [4,26]. Therefore, sensitive files
often remain on the eMMC for a long time (even after a factory reset [25]).
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Footprint in IPC: An Android app interacts with other apps or system pro-
cesses frequently through IPC (mainly through Android’s binder). Sensitive
information may be leaked to other processes or remains in memory/flash [32]
depending on the specific kind of IPC. In either case, footprints left on the device
after the execution of their creators.

Side-channel Footprint: Except the memory pages and files directly and
actively generated by an app, there are some unobtrusive footprints produced
by the Android OS unintentionally. An adversary can also collect these foot-
prints and use them to infer the behaviors of individual apps. In general, these
footprints are divided into two major types: runtime side-channel footprints
that can only be obtained while an app is running, and legacy side-channel
footprints kept in memory or flash storage after the execution.

– Runtime side-channel footprints. A runtime side-channel footprint is a kind
of information that can be gather by a (malicious) app with normal priv-
ileges [11,31]. Under the protection of Android’s sandbox, typical runtime
side-channel footprints include process name and UID of running apps. In
Android, the system uses the package name as the process name of the app.
By gathering process name through shell command ps, a malicious app easily
obtains footprint of all the running apps. The sensors and microphone are also
sources of data leakage. Previous researches have demonstrated the feasibility
of inferring identity from such side-channel footprint [5,9,16,17,31].

– Legacy side-channel footprints. A legacy side-channel footprint is a kind of
information related to the identity of the host app and is often kept by the
Android system. Most kinds of these footprints are package names and UIDs
logged by specific system monitors, which record system events such as the
usage of system resources. some Android system components keep the sen-
sitive runtime footprint of apps unintentionally. Although the threat model
in this paper assumes that the OS and the device are both trustful, these
footprints are somehow accessible without permission requests, leading an
attacker to infer the behaviors of the device owner.

2.2 Footprint Expunging Strategy

The essential requirement for a robust footprint expunging strategy is that after
the execution (i.e., the app process is terminated), even the user herself, knowing
the execution details, could not able to recover any usable evidence of activities
conducted on the device. Hence, the expunging strategy requires that any secret
would not persist explicitly.

To achieve such goal, we consider four design principles summarized from
real-world threats when sanitizing different footprints. These principles are based
on either previous best practices or our observations. If a footprint sanitization
scheme violates any of these principles, information may not be cleaned and thus
can be identified as a footprint.
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1. Sensitive data in non-persistent memory should have a lifetime as short as
possible. Consider that an attacker could later acquire administration privilege
to spy upon the entire memory space, the runtime execution data in memory
must be wiped out to counter such attack. Hence, at the end of its lifetime,
the data should be appropriately erased.

2. Sensitive data should be encrypted before being stored in the persistent storage
medium. It believed that the secure deletion of disk data is not able to be
fulfilled on the state-of-the-art storage medium of mobile devices. Therefore,
any data written to the flash memory must be encrypted beforehand. The
encryption key should be ephemeral and must only be kept in non-persistent
memory. Thus this kind of data can be cryptographically erased when the
execution is over by wiping the temporary key.

3. The interaction of app and the OS should be censored so that sensitive data
leakage can be filtered. Confidential information sent from the app to the
system processes is hard to clean thoroughly (the cleaning may crash the
system). Therefore, a filter applied on IPC can block the leakage beforehand.

4. The execution itself should be side-channel resistant. In other words, its run-
time information should not be gathered by a concurrently executed malicious
program.

3 MIST

In this section, we present our solution to erase the app footprint on Android.
We design and implement Mist, a system based on Android OS to offer a robust
and comprehensive footprint expunging. Mist provides Android user the ability
to run apps within an ephemeral container, leaving no recognizable footprint
after being executed.

The design of Mist follows the four principles mentioned in Sect. 2.2. Mist
achieves footprint expunging through providing the following features: (1) Mist
offers in-time memory elimination right after the termination of the protected
app to wipe the footprints left in memory. (2) Mist encrypts files to secure the
footprints left in the persistent storage medium. (3) Mist monitors the inter-
action between the protected app and system services with fine-grained access
control policy to restrict sensitive information leakage. (4) Mist obfuscates the
identity of the protected app and control the access to specific system resources
to avoid side-channel information eavesdropping and gathering.

3.1 Footprint Discovering

Mist conducts a comprehensive system monitoring strategy to record every
possible behaviors related to footprint generating. As marked in Fig. 1, Mist
implements an ephemeral container to keep monitoring sensitive information
within this restricted environment. Several system components of Android are
modified to achieve the design goals of footprint discovering and expunging, and
the original app execution model has been re-implemented with additional or
alternative steps.
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Fig. 1. The ephemeral container of Mist

Memory Monitoring. Mist records all used memory pages as footprints.
Since Mist modifies the original Android OS and has the full control of the
device, and thus it has the privilege to monitor every memory page used by the
protected app directly.

File System Monitoring. Mist monitors an app’s file I/O operations through
checking all possible directories the app could write. Due to the restriction of
Android sandbox, an app can only write files to several directories including its
own private directory in the userdata partition, the SDcard, and a few temporary
directories (e.g., /data/local/tmp). Hence the monitoring of an app’s file I/O
operations is implemented through checking these directories, and all data files
modified by the monitored app are considered directly as footprints.

IPC Monitoring. In Android, there are many different ways to achieve data
exchange between processes such as using Intent and AIDL, which based on
Android’s Binder. We monitor all IPC communication channels to investigate
which system services a common Android app may use and what data these
IPCs may transfer. We first modified the userspace library libbinder.so, which is
loaded by most apps to implement IPC supervision. We also add monitoring code
to the IPCThreadState::talkWithDriver function in IPCThreadState.cpp so
that IPCs through a kernel driver can be supervised.

Side-Channel Footprint Monitoring. As discussed above, the side-channel
footprints produced by the Android system may be stored in different system
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files. To discover such side-channel footprints, we use Inotify to monitor the
entire file system during the execution of an app. All files that have been modified
during the execution will be analyzed manually, and those contain recognizable
data such as packages names and UIDs are considered as footprints.

3.2 Footprint Expunging

Mist executes an app in an ephemeral container and footprints are monitored
and cleaned during the entire lifetime of the app. As shown in Fig. 2, to run an
app, Mist first assigns to it an encrypted partition and installs the app with
obfuscated identities (package name and UID). Then the execution is monitored
to block sensitive information leakage through IPC or system logging. Finally,
Mist eliminates memory pages of processes of both the executed app and some
tainted services at the end of the execution, and removes the app through dis-
posing runtime residue in system logs and erasing encrypted key. In this way,
Mist sanitizes the execution footprints of the app thoroughly.

Fig. 2. App execution within the ephemeral container of Mist

Memory Page Elimination. Smart devices use volatile RAM to store in-
memory data, hence by rebooting the device could the OS erase the remained
data in memory thoroughly. Modern smartphones, however, are usually designed
to work without a reboot for a long period. Once the attacker obtains the device,
he can use memory dump tools such as fmem [12] and crash [2] to extract all
physical memory pages (with root privilege), or physically access the memory
(without root privilege). Most users would not reboot their devices for days,
which makes the memory footprint issue even more severe.

Mist rewrites the corresponding memory space with null byte when a pro-
cess terminates to deallocate the in-memory data generated securely. A kernel
module is implemented to fulfill this task: it monitors the memory deallocation
function in Android kernel, and whenever a monitored app exits or is killed,
the kernel module reads the layout of virtual memory from /proc/<pid>/maps
and calculates the address range to be eliminated. Then it passes the address of
virtual memory should be eliminated and the PID of target process to a memory
sanitization stub to erase all contents on those addresses.
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File-System Encryption. Mist sets up an exclusive encrypted partition with
an ephemeral key for each protected app. After that, all file operations of the pro-
tected app are redirected to this partition. Mist modified the PackageInstaller
to change the default private directory to an exclusive encrypted partition which
is set up before the installation. Then it uses dm-crypt to create this partition
with AES-256-CBC and initialize an ephemeral key, which is then kept only
in memory and will be wiped immediately after the uninstallation. During the
execution, Mist hooks all file related operations in libc to redirect them to
the encrypted partition, making sure that every recognizable footprints are only
stored in this secure zone. When the app is uninstalled, or the system reboots,
the ephemeral key for this encrypted partition is discarded and thus the sensi-
tive data is cryptographically erased, leaving no recognizable footprints in flash
memory.

IPC Supervision. Mist uses a configurable access control policy to supervise
the IPC between the protected app and system services. The control policy only
focuses on those IPCs initiated by the protected app and contain recognizable
footprints, leaving others untouched. And Mist treats different IPCs with two
strategies: message blocking or tainted process terminating. An IPC is blocked
if it broadly contains sensitive information (e.g., individual strings related to
the app), or it triggers a permanent changing of the system status (e.g., the
modification of system databases or logs). For instance, if the app sends an SMS,
the relevant system service will writes a record into system databases. However,
the record in the database file is kept as a fingerprint due to the file wiping issue.
As a result, Mist chooses to abandon such messages. For those IPCs that contain
no sensitive information and only affect the status of the system temporarily
(e.g., messages only kept in system memory), Mist monitors and restarts those
tainted processes after the execution of the protected app, triggering the memory
elimination of those processes accordingly.

Side-Channel Footprint Sanitization. Generally, Mist adopts an identity
obfuscation strategy to protect sensitive information leakage against side-channel
analysis. In detail, a protected app installed in Mist is assigned an obfuscated
package name and a corresponding UID. We modified the PackageInstaller
system service to assign a randomly generated package name during the instal-
lation. By doing so, the installed app runs like a new identity so that the infor-
mation gathered by both malicious apps and system services would not leak
the original identity. In addition, Mist utilizes relevant system functionalities
to clean those side-channel footprints left in the memory of system services. For
instance, the outputs of both logcat and dmesg produce sensitive information,
and we can use shell commands provided by the system to clean them (logcat
-c and dmesg -c).

For those side-channel footprints based on specific system resources such
as sensor, microphone and input method, we disable these interfaces for
other processes when an protected app is running. Besides, memory pages
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in the cache containing verifiable information will be removed if they are no
longer needed. We can manually clean them through using a shell command
echo 3 >/proc/sys/vm/drop caches.

4 Evaluation

This section presents the evaluation results of Mist to show that it provides
a comprehensive, usable, and efficient execution mode to expunge footprints of
apps. In particular, we measure Mist from three aspects: (1) how comprehen-
sively can Mist discover execution footprints of popular apps; (2) whether the
footprint expunging policy works effectively, and would it affect the normal exe-
cution of both the app and the system; (3) what is the performance overhead
of Mist.

4.1 Discovered Footprints of Popular Apps

Traces of executions are various and some of them are very stealthy on Android
device, some execution footprints are often out of regular execution scope of an
app. To discovering as many as footprints (especially those recorded uninten-
tionally by the system or reside in system buffers) we conduct comprehensive
experiments to help study how common app behaviors generate footprints. We
collect the top 100 apps (covering 27 different types and each of them has been
downloaded for at least one million times) from Google Play market for our
experiments and execute them automatically with the monkey tool on two com-
modity Android devices (Nexus 5X and Nexus 6P) with Mist. Apparently, we
found memory pages and files in app’s sandbox and on the SDcard as footprints.
Interestingly, we also have observed many stealthy footprints in IPC and system
files.

Footprints in IPC: After tracing all the IPC interfaces during the execution of
these apps, we pick up representative IPC interfaces and analyze them manually
to find whether these IPCs leak recognizable runtime data of a individual app
or not. Table 2 shows part of the analysis of those most frequently invoked IPC
interfaces due to the limitation of this paper. Among these IPC interfaces, we
found only a part of them leak sensitive information to the system databases. In
response, we can define corresponding access control policy for those interfaces
(as the Policy column in Table 2 illustrated). According to the analysis, not all
IPC interfaces are forbidden for a protected app. Only those IPC interfaces that
leak information to flash storage should be blocked (otherwise the corresponding
system services for flash I/O should be modified).

Side-channel Footprints: Previous experiments [5,9,14,16,17,31] have shown
that the screenshot, keyboard input, sensor data and microphone data can all
make running apps distinguishable from other apps. Our experimental results
demonstrate that many system logging services also leave legacy information on
the device. After analyzing the result of whole file system monitoring, we then
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Table 2. The (partial) analysis of most frequently invoked IPC interfaces

IPC interface Leaked footprint Access control policy

IContentProvider.insert in flash storage Forbidden

IActivityManager.startActivityAsCaller in memory Restarta

IPackageManager.getPackageInfo in memory Restarta

IActivityManager.broadcastIntent in memory Restarta

IGraphicBufferProducer.DEQUEUE BUFFER - Allowed

DisplayEventConnection.REQUEST NEXT VSYNC - Allowed

IGraphicBufferProducer.DETACH BUFFER - Allowed

IActivityManager.activityResumed - Allowed

IContentProvider.query - Allowed
aRestart the corresponding system service of IPCs.

manually analyse the modified files and find there are three kinds of data related
to the identity of apps which have been executed:

– The Batterystatus file /data/system/batterystatus.bin is used to record
the battery usage of each app since last full charge. Device owner can check
it through Setting menu or shell command dumpsys batterystats for more
detailed information. All these information discloses the behaviors of specific
apps.

– The netstats file (/data/system/netstats/) is used to record the network-
data usage of each app. We can also infer which apps have been executed
through these files.

– The task file (/acct/uid/<uid>/tasks) contains the ever used PID of a
specific UID (an individual app), and the change of this file can be used to
confirm the execution of apps.

Besides the footprints left on the disk, there are also some system services
keep recognizable footprints in their log outputs. For instance, Android inherits
the logging system from Linux, providing a various way for viewing system log.
We can use shell command dmesg to read kernel logs messages. Another logging
system is the logcat system of Android system debug output, which gives an
abundance of information about happened activities on the device Such kind of
log messages are generated by the system services and cannot be cleaned by the
user. A less noticed place is the Linux page cache, which also holds the data that
may expose the execution of apps. The role of the Linux page cache is to speed
up access to files on the drive. In other words, the Linux page cache always keeps
the data related to files opened by running app.

4.2 Usability Evaluation

Expunging. After we proved that many footprints exist in current Android app
execution model, we evaluate the usability of Mist (i.e., whether Mist expunges
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typical footprints) with real-world apps collected from Google Play. We utilizes
five forensic analysis tools to detect footprint: Oxygen mobile forensic Suite is a
mobile forensic software for logical analysis of smartphones and PDAs developed
by Oxygen Software. Andriller is software utility with a collection of forensic tools
for smartphones. Andriller can extract and analyse data stored in the userdata
partition if the device is rooted. UFS Explorer is a data recovery software for
data loss cases of different complexity. Here we use it to analysis the disk dump
to recover deleted data related to executed apps. LiME is a widely used Linux
kernel module to dump RAM contents of the device. In most cases, LiME is
used to perform live memory analysis. In addition, we developed Side-channel
FP Collector, an Android forensics tool based on our study of side-channel foot-
prints of Android. It extracts the side-channel data and restores the behaviors
of executed apps. We use these tools to analyze the following data as suspicious
information leakage sources:

– memory dump of the Android system;
– dump of the userdata and the SDcard partitions;
– system database files;
– battery usage log;
– network usage log;
– files in /acct/uid;
– output of logcat.

We executed the tested apps in a device with Mist and in a native Android
device, respectively. Then we used forensic tools to analyze both devices and
compared the analyzing results. The results are shown in Table 3. For the native
Android device, forensic tools detected many footprints listed in the Table. On
the contrary, Mist expunged those footprints thoroughly and none of the foren-
sics tools could discover useful footprint.

Compatibility. To test the compatibility of Mist, we expand our samples
mentioned in Sect. 4.1 to the top 200 apps from Google Play. Each of them is
executed on a Nexus 5X with Mist for 10 min with the monkey tool. We find
some remarkable failures in this experiment and here we provide our analysis to
these failures and our improvement to Mist.

In the beginning, we found that 80 out of 200 selected apps crashed. We
analyze the crash log and find that most of them are caused by the inconsistent
between origin package name and the obfuscated one. Some apps use system
API getPackageName to get its own package name during runtime, and some-
times such package name is used to interact with components of the app. For
example, the dynamically generated string “getPackageName() +’.a.b.c’” repre-
sents to a specific class within the app, app can use this string to visit this class
through reflection mechanism. But in Mist, the return value of getPackageName
has been changed to the obfuscated package name, which is inconsistent with
the original one. Because we do not modify the class name synchronously, the
app will throw the ClassNotFound exception when visiting the class through
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Table 3. Footprint expunging using Mist

Forensics tools Data source Native android Mist

Oxygen Forensics Suite Disk files photos taken by executed apps; -

System databases SMS records and account records

related to executed apps;

-

Call logs logs that contain package and activity

names;

-

Andriller Disk files files that contain package names,

recognizable strings and icons related

to executed apps;

-

UFS Explorer Deleted files xml files, icons and pictures related to

executed apps;

-

LiME Memory dump package names and recognizable

strings left in memory;

-

Side-channel FP Collector Battery usage records that contain package names,

icon and run time of executed apps;

-

Network usage records that contain package names

and icons of executed apps;

-

ACCT files UIDs and PIDs of executed apps; -

getPackageName. This problem also happens when the app visits resources
defined in the xml files. Another problem is that some apps may conduct an
Activity invoking through an Intent with hard-coded Activity name, which
also involves the package name inconsistency.

To address this issue, we further modified the implementation of Mist: we
modified the findClass function in the BaseDexClassLoader class to change
the obfuscated package name to the original one and modified the function
startActivityMayWait in package com.android.server.am to change the hard
coded package name to our obfuscated one. Note that these package name patch-
ing only happen in the memory of the protected app and will not conflict with
the installation process, and thus solves the inconsistency problem. After solving
these inconsistent problems, All the 200 selected apps work correctly with Mist.

Since Mist provides a series of extra security features, it also brings some
inconveniences to the users of protected apps. Users should reinstall the protected
apps before the execution and some system services are disabled due to the IPC
supervision. But considering Mist is designed for the users who have additional
security demands, such compromises are acceptable while chasing the goal of
leaving none footprint in the device.

4.3 Performance Overhead

The specific execution of an app under Mist inevitably introduces performance
overhead. To evaluate the overhead of Mist precisely, we run the top 200 apps
from Google Play automatically on both normal Nexus 6p and Nexus 5x with
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Fig. 3. Performance overhead of MIST

Mist using Monkey, and record the time each app spends on the installation,
launching, and terminating stage, respectively. We also use the AnTuTu Bench-
mark (a state-of-the-art Benchmark suite in Google Play) to evaluate the running
overhead of Mist.

The results of performance overhead are shown in Fig. 3. Among the three
typical stages of app lifetime: installing, launching, and terminating we can see
that the mostly influenced stage is the installation. The introduced encrypted
partition operation in this stage brings a 38% (6.23 s) overhead on average to set
up an encrypted partition. However, since the setup of the encrypted partition
has been done before the execution, it will not affect the normal execution of the
app. Moreover, after the execution, the memory elimination brings a 54% (0.06s)
overhead on average. Considering that these operations are only executed once
for an execution, we believe that Mist does not produce a significant impact on
user experience.

Except those operations happened before and after the execution, From Fig. 3
we can see that the use of Mist only slightly affect the normal execution: per-
formance overhead for both the launching and the overall execution of an app
are less than 6%. Note that although the overhead for the file I/O operation is
98% (due to the file encryption) according to the AnTuTu I/O testing, this is
the maximum overhead since seldom app continuously reads or writes file during
its execution as the Benchmark testing. Therefore, we argue that the overhead
of file I/O is acceptable for most application scenarios.

5 Related Work

Private execution is first introduced to web browsers as private browsing mode.
This mode guarantees that an attacker who takes control of the machine after the
user exits private browsing can learn nothing about the user’s actions while in
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private browsing. Although private browsing mode has already been supported
by four major browsers (Internet Explorer/Edge, Firefox, Chrome, and Safari),
recent study by Aggarwal et al. [3] points out that private browsing is used
differently from how it is marketed. Xu et al. further shows that Chrome and
Firefox do not correctly clear some of their browsing footprints [29], and they
propose Ucognito, a prototype system to enhance existing private browsing mode
of browsers. Similar to Mist, Ucognito adopts a filesystem overlaying approach
with a sandbox filesystem to assure no persistent modification is stored. However,
it only focuses on web browsing and is not universal.

To Generalize private execution on commodity systems, researchers proposed
a myriad of design schemes. Lacuna [8] is a comprehensive system that allows
users to run programs in private sessions of desktop and server Linux systems.
It uses a special ephemeral channel to isolate the protected program and periph-
eral devices while making it possible to delete the memories of this communica-
tion from the host. However, it relies on a modified QEMU-KVM hypervisor to
achieve this functionality and is quite heavyweight, and thus is demanding to be
ported to Android devices. PrivExec [18] is an operating system service for pri-
vate execution. It allows any application to execute in a private execution mode
where storage writes will not be recoverable by others during or after execution.
PrivExec only requires the modification of the operating system and is promising
to be ported to Android platform. However, it does not consider the forensic
deniability issue. TpriVexeC [7] improve the performance of private execution via
keeping both I/O and runtime data of private applications in memory only. But
it does not consider that the secure deallocation and sensitive runtime data may
be leaked if memory forensic analysis is employed.

For Android system, CleanOS [28] is a representative system that fulfills mem-
ory encryption based protection. It identifies and tracks sensitive data in RAM
and on stable storage and encrypts it. CleanOS leverages a trusted, cloud-based
service to manage encryption keys, and evicts a key to the cloud when the
data is not in active use on the device. Because it mainly focuses on in-memory
objects encryption and does not consider the comprehensive behaviors of an app
thoroughly, CleanOS may either leak sensitive information via system services
interaction (file I/O, IPC, system API invoking) or be incompatible with many
standard functionalities provided by the OS. AppShell [30] is a practical Android
app private execution solution that supports both in-memory and on-disk data
protection by transparently encrypting the data, which requires neither frame-
work modification, nor the root privilege. However, it is possible that sensitive
data may reside in places that cannot be touched by AppShell.

Compared with them, Mist provides a more comprehensive footprint
expunging mechanism on Android. We demonstrated it in a comparison between
Mist and previous solutions related to footprint expunging in Table 4: except
Mist, other solutions all fail to achieve footprint expunging on Android for
violating at least five items.
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Table 4. Comparison to other footprint expunging solutions

Mist PrivateDroid CleanOS Lacuna Privexec Ucognito

Memory Y N Y Y Y Y

File Y N Y Y Y N

IPC Y N N Y Y N

Process status Y N N Y N N

Battery usage Y N N - - -

Network usage Y N N - - -

Screen Y N N Y N N

Microphone Y N N - - -

Sensor Y N N - - -

Keyboard input Y N N - - -

System log Y N N Y N N
1“-” indicates that the tested solution works on Linux, which contains no
such footprint.

Some researchers use sandboxing techniques to protect Android app against
the attack from malwares. Android app sandboxing provides each app a sepa-
rated execution environment so that third-party apps can’t detect and tamper
the execution of protected apps. According to our threat model, we assume the
attacker has physical access to the device, which means the attacker can analyze
the disk and memory data directly. That’s why Mist provides features that not
considered by sandboxing techniques such as filesystem encryption and memory
page elimination.

6 Conclusion

In this paper, we present a privacy enhancement system Mist to achieve the goal
of execution footprint expunging of Android apps. Mist adopts a comprehensive
footprint detecting and expunging policies, and works with real-world Android
devices. We evaluate Mist with popular Android apps and demonstrate that
Mist can eliminate most execution footprints compared with regular Android
OS.
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