
VirTEE: A Full Backward-Compatible TEE with Native Live
Migration and Secure I/O

Jianqiang Wang, Pouya Mahmoody,Ferdinand
Brasser,Patrick Jauernig,Ahmad-Reza Sadeghi

Technische Universität of Darmstadt
{firstname.lastname}@trust.tu-darmstadt.de

Donghui Yu,Dahan Pan,Yuanyuan Zhang
Shanghai Jiao Tong University

{yudhui,dhpan98,yyjess}@sjtu.edu.cn

ABSTRACT
Modern security architectures provide Trusted Execution Envi-
ronments (TEEs) to protect critical data and applications against
malicious privileged software in so-called enclaves. However, the
seamless integration of existing TEEs into the cloud is hindered,
as they require substantial adaptation of the software executing
inside an enclave as well as the cloud management software to
handle enclaved workloads. We tackle these challenges by present-
ing VirTEE, the first TEE architecture that allows strongly isolated
execution of unmodified virtual machines (VMs) in enclaves, as well
as secure live migration of VM enclaves between VirTEE-enabled
servers. Combined with its secure I/O capabilities, VirTEE enables
the integration of enclaved computing in today’s complex cloud in-
frastructure. We thoroughly evaluate our RISC-V-based prototype,
and show its effectiveness and efficiency.

KEYWORDS
RISC-V, TEE, Virtualization, Virtual Machine Migration

1 INTRODUCTION
Trusted Execution Environment (TEE) was proposed to safeguard
the confidentiality and integrity of the run-time data in a strong ad-
versary model, i.e., in the presence of malicious software including
the operating system. Traditional software sandboxing [34] [33] [18]
fails when privileged software such as OS is under the adversary’s
control. Hence, TEEs enforce memory access control mechanisms
to the protected ranges of memory by means of the so-called en-
claves that are inaccessible even to the high privilege software.
The major platform vendors provide their proprietary enclave se-
curity architectures such as Intel SGX [8], Intel TDX [9], AMD
SEV [26], ARM TrustZone [2] and ARM CCA [6]. Similarly, aca-
demic research has also proposed a variety of enclave architectures
using CPU features or customized hardware, such as Keystone [25],
Penglai [19], Sanctum [17], CURE [12] and Komodo [20]. How-
ever, these solutions have several shortcomings such as lack of full
backward-compatibility, native live migration and secure I/O.

In Intel SGX [8], system calls are not allowed to be directly used
inside the enclave. Therefore, programmers cannot develop SGX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530436

applications by using normal tool chain. Although the provided
SDK can facilitate the coding process, the cost of manual develop-
ment for the specific CPU feature from scratch is still high. Recent
works have attempted to port unmodified legacy applications into
SGX such as Panoply [31], Haven [13], Scone [11] and Graphene-
SGX [32]. However, these solutions suffer from scalability and com-
patibility problems. Keystone [25], Penglai [19], Komodo [20], and
Sanctum [17] also provide their SDK for developers to develop en-
claved applications and, as a result, slow down the acceptance of
the TEE solutions by the industry.

To provide application level backward-compatibility, virtualmachine-
based TEEs, e.g., Intel TDX [9], AMD SEV [26] and ARM CCA [6]
have been developed by the major industry players. However, the
hypervisor is assumed to be untrusted in their threat model. Con-
sequently, the hypervisor is deployed outside the enclave memory.
The virtual machine OS kernel needs to be modified to adapt to
the untrusted hypervisor. For instance, when it traps into the hy-
pervisor, the virtual machine OS kernel is responsible for cleaning
the secret data in the general purpose registers. Since the hypervi-
sor and the virtual machine are not in the same enclave memory,
the virtual machine is supposed to implement its own secure I/O
which requires extra developing effort for the programmer. ARM
TrustZone [2] is another virtual machine based TEE, however, it
does not support multiple enclaves so it cannot be deployed on the
cloud server. Hence, currently virtual machine-based TEEs do not
provide full backward-compatibility.

In order to take full advantage of hardware resources, the cloud
server commonly needs to migrate virtual machines to other plat-
forms. However, existing virtual machine based TEEs hardly pro-
vide simple and native migration feature as the enclave memory
is not accessible to other software even for the hypervisor in the
platform. Previous works such as [28] [21] [27] [22] aimed to pro-
vide third party migration support to those TEEs. However, they
either require additional hardware extension or understanding of
the enclave applications.

To tackle the problems of the existing solutions, we propose
VirTEE, a full backward-compatible TEE on RISC-V architecture
enabling native live migration and secure I/O by utilizing the RISC-
V hypervisor extension and VirTEE hardware. VirTEE hardware
allows both strong enclave memory isolation and large size en-
clave while incurring small performance overhead. Facilitated by
large-size enclave support, VirTEE runs unmodified kernel and ap-
plications on top of an enclave monitor in one enclave. The enclave
monitor is located in the same enclave as the virtual machine and
consequently is able to provide transparent native migration and
secure I/O for the virtual machines. The evaluation results show

241

https://doi.org/10.1145/3489517.3530436
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530436&domain=pdf&date_stamp=2022-08-23

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Cloosters et al.

that VirTEE only imposes moderate overhead on standard bench-
marks such as rv8, CoreMark, as well as on real-world software
such as SQLite and OpenSSL,

In summary, we make the following contribution:
• We designed a novel TEE solution on RISC-V architecture
which provides full backward-compatibility, native live mi-
gration and secure I/O.

• We implemented VirTEE prototype based on QEMU simula-
tor and CURE RISC-V security architecture [12], and will be
open-sourced on GitHub.

• We thoroughly evaluated VirTEE prototype performance on
standard benchmarks and real-world software to show its
effectiveness and efficiency.

2 BACKGROUND
In this section we give an overview of the aspects that are helpful to
understand the remainder of the paper. Specifically, we elaborate on
the RISC-V privilege levels and the RISC-V hypervisor extension.

RISC-V Architecture Privilege Levels. The RISC-V architec-
ture basically defines four privilege levels. The firmware runs in ma-
chine mode, the most privileged mode (PL0), its memory integrity
is protected by secure boot and the Physical Memory Protection
(PMP) unit. The operating system kernel runs in PL1, and user-
space applications run in PL2. The PL3 privilege level is introduced
by the RISC-V hypervisor extension which be elaborated next.

RISC-V Hypervisor Extension. RISC-V introduced a hyper-
visor extension for virtualization. Instead of the operating system
kernel, the hypervisor runs in PL1 and the virtual machine that
contains the virtual machine kernel and virtual machine applica-
tions run on PL2 and PL3. Any memory access from the virtual
machine is further translated by a second level page table to form
the real physical address. The hypervisor can decide which physical
memory page is mapped to the virtual machine by manipulating
the second level page table. Since RISC-V uses memory mapped
I/O (MMIO) to access device registers, the hypervisor is also able
to intervene the virtual machine I/O process. Similar to system call,
the firmware which is running in PL0, provides low level function-
ality interfaces called environment call (ECALL) for the operating
system. Any ECALL from the virtual machine is handled by the
hypervisor first. The hypervisor determines whether to forwards
the ECALL requests to the firmware or returns with fake values.

3 VIRTEE
3.1 Adversary Model
We consider the adversary model along the line of related works [2,
12, 14, 17]. The Trusted Computing Base (TCB) consists of three
components, i.e., 1) the underlying VirTEE hardware, 2)the security
monitor, a privileged component in PL0 that is able to configure
the VirTEE hardware and 3) the enclave monitor running in the
enclave. We assume that the adversary controls the whole OS. The
adversary can leak secret data from the enclave by means of cache
side-channel attacks, forge enclaves, etc. However, VirTEE, as for
other TEE architectures, does not protect enclaves against memory-
corruption attacks. We also assume that the peripherals such as
hard drive are also accessible to the adversary. DoS attacks are

orthogonal to the scope of this paper, as most TEEs do not give
guarantees on availability.

3.2 Design Overview
VirTEE is a novel security architecture that allows execution of
unmodified virtual machines (VMs) in strongly isolated enclaves.
Further, VirTEE completes this design with secure live migration
and secure I/O. VirTEE design is shown in Figure 1. The VirTEE
hardware provides strong physical enclave memory isolation and
cache side channel attack resilience. Based on the VirTEE hardware
memory access control mechanism, the security monitor provides
enclave memory management (e.g., creating new enclave memory,
increasing and shirking enclave size) as well as enclave metadata
management (e.g., measurement, header address and size), attesta-
tion primitives and context switching for the host and the enclaves.
Inside the enclave, the unmodified VMs run on top of the enclave
monitor. Since they are in the same enclave, the enclave monitor
can directly access the VM memory. The enclave monitor provides
live migration and secure I/O support for the VM that facilitates
the enclave user a lot. In section 3.6, we will elaborate the main
workflow of VirTEE.

In the following, we will present the respective components in
more detail.

3.3 VirTEE Hardware
The VirTEE hardware is the secure platform infrastructure of Vir-
TEE. It divides the physical memory into enclaves (different colors
in Figure 1). Several pairs of registers which are only accessible by
the security monitor are used to record the enclave header address
and size, and are further used by the filter engine to grant access per-
missions. If and only if the instruction and target data are located in
the same enclave, permission will be granted. The VirTEE hardware
uses registers instead of the page table to manage enclave memory
so that it can support large size enclave memory. To provide cache
side-channel attack resilience, when a CPU core is executing one
enclave, it has its own last-level cache partition which is not shared
by other cores. The CPU core will clean its cache information before
exiting the enclave. In this way, cache information is locked into
the specific core, preventing cache side-channel attacks.

3.4 Security Monitor
The security monitor is a part of firmware and runs in PL0. It man-
ages the enclave memory by manipulating the registers provided by
the VirTEE hardware. Since it can change the whole enclave layout,
it has full access to the physical memory. During platform boot, the
integrity of the security monitor is verified by secure boot [5] so
that we assume that the security monitor is not compromised at
load time. In summary, the security monitor provides the following
functionalities.

Enclave Metadata Management. During enclave initialization,
the security monitor generates an enclave instance which contains
the enclave id, header address, size, derived local attestation key, and
its measurement report (i.e., enclave fingerprint), etc. The instance
is stored in a list protected by the security monitor.

Enclave Memory Management. The security monitor can
modify the registers to change the enclave memory layout. At

242

VirTEE: A Full Backward-Compatible TEE with Native Live Migration and Secure I/O DAC ’22, July 10–14, 2022, San Francisco, CA, USA

App

Host Operating
System Kernel

App

Firmware

Enclave
Monitor

VM Kernel

App

Enclave
Monitor

VM Kernel

App

Enclavea Enclaveb

 System Bus

User
Level

Supervisor
Level

Machine
Level

VM User
Level

VM Supervisor
Level

Hypervisor
Level

DRAM

Filter Engine
VirTEE
Hardware

L2 cache

Security Monitor

Figure 1: Design overview of VirTEE

enclave initialization, the security monitor allocates new enclave
memory according to the request arguments. When it receives a
request from the enclave to modify the enclave size, the security
monitor first checks if the requestedmemorywill overlapwith other
enclave memory. If so, the security monitor rejects the request. If
not, the security monitor changes the corresponding registers and
notifies the enclave.

Attestation Primitives.Attestation is used by the enclave appli-
cation to prove that it is the genuine entity assumed by the verifier.
Based on the prover’s and the verifier’s identity, the security moni-
tor generates cryptographic report and quota for local attestation
and remote attestation respectively. A device key is hardcoded in
the security monitor and is used to generate attestation keys. Since
the security monitor has full access to the physical memory, it can
implement a zero copy (in place) report-generating mechanism
which significantly reduces the overhead.

Context Switching. To enter an enclave, the security monitor
first checks if the target enclave is ready to be executed. If the check
passes, the security monitor prepares the context for the enclave
such as arguments and sets up the control registers. Then, it jumps
to the enclave. When the enclave terminates, the security monitor
updates the enclave status and switches back to the host kernel.

3.5 Enclave Monitor
The enclave monitor running in the hypervisor privilege level is
the core of VirTEE. We regard the enclave monitor as part of the
TCB, therefore, the VM kernel is not required to clear sensitive
data before trapping into the enclave monitor. The RISC-V hypervi-
sor extension guarantees that every memory access including I/O
registers access is automatically handled by the enclave monitor
first. By intercepting the I/O process, the enclave monitor provides
transparent secure I/O for the VM. Since the enclave monitor is
located in the same enclave memory as the VM, it can directly
read the VM memory and migrate the VM to another platform
without third-party support. By using the enclave monitor, VirTEE

achieves full backward-compatibility, native live migration and se-
cure I/O. However, note that the enclave monitor is small so that
adds only little attack surface to the enclave. We summarize the
enclave monitor’s main functionalities as following.

Enclave Memory Management. In principle, without the en-
clave monitor, a kernel running in PL1 can access any physical
address including the non-enclave memory even though the ac-
cess will be blocked by the VirTEE hardware. However, we prevent
such unintentional memory access by using the enclave monitor
memory protection scheme. Every physical address that the VM
accesses will be further translated by a second-level page table to
the real physical address. We initialize a second-level page table
at the enclave monitor initialization process. At run time, the en-
clave monitor communicates with the security monitor to allocate
new enclave pages and maps the pages for the VM. The enclave
monitor can prevent the VM from accessing non-enclave memory
by mapping the enclave memory pages to an out-of-enclave VM
address. RISC-V architecture uses memory-mapped I/O (MMIO)
to access device registers. If the physical address is located in the
MMIO memory range, it means that the VM kernel is accessing the
device registers. We handle MMIO access by simulating the specific
devices. The device virtualization details will be discussed next.

Device Virtualization and Secure I/O. For device-registers
accesses, we parse the register values to get the I/O-request ar-
guments such as the buffer address, size, and hard driver sector
number. After extracting the arguments, the enclave monitor for-
wards the I/O requests to the real devices. During the forwarding
process, the enclave monitor can encrypt and decrypt the I/O data
in a transparent way so that it achieves I/O data confidentiality. In
VirTEE, we implemented a serial port as the console and a block
device as the hard drive for their limited registers. Note that we can
virtualize any device as long as the register accesses are properly
handled.

In our threat model, the peripherals such as hard drive can be
readable for the attacker. For example, the VM kernel commonly

243

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Cloosters et al.

uses a partition in the hard drive as swap space and writes the
memory into the partition. In this way, the secret memory will be
leaked to the attacker. Without the enclave monitor, the VM kernel
needs to be modified to encrypt the memory before writing them
to the hard drive. With the enclave monitor, the I/O requests are
first handled by the enclave monitor. After receiving an I/O request,
the enclave monitor lookup the device tree to infer which device
register the VM accesses. If it is the hard drive, the enclave monitor
parses the arguments to get the sector number to see if it is in the
swap partition, then the enclavemonitor decideswhether to encrypt
or decrypt the data. In this way, VirTEE achieves transparent secure
I/O.

Attestation Service.Attestation implementations are commonly
deployed as separate enclaves by other TEEs. However, we encap-
sulate the attestation implementation in the enclave monitor, and
the enclave monitor provides interfaces to the VM. For example, a
VM, say the verifier, starts to attest another enclave VM, the prover,
on the same platform. It then calls the local attestation interface
exposed by the the enclave monitor of the corresponding enclave.
Then, the enclave monitor creates an attestation report of the en-
clave. The enclave monitor uses attestation primitives provided by
the security monitor to complete the attestation process with the
verifier. The Diffie–Hellman key exchange data are encapsulated in
the report so that the secure channel is established and returned to
the VM.

Live Migration Service. VirTEE provides a live migration ser-
vice for the source enclave VM to migrate itself to a target trusted
platform. VirTEE presents a stub enclave as the migration target.
In the stub enclave, the enclave monitor keeps listening on remote
migration request and continues the VM execution after finishing
the migration process. Similar to [16], VirTEE takes three steps to
finish the migration process. First, the source enclave uses remote
attestation to verify the target and establishes a secure channel
with the target. Secondly, the source enclave monitor keeps the
VM running, clears the dirty bit in the whole second-level page
table and transfers the VMmemory to the target. Finally, the source
enclave monitor stops the VM and checks the page-table dirty bit.
Dirty pages are transferred again to target platform as well as the
virtual devices status and pending I/O requests. In this way, we
keep the VM downtime small.

3.6 Enclave Setup
VirTEE works mainly as the following steps:

(1) The host allocates contiguous physical memory, fills the
memory with the enclave monitor and the virtual machine
binary file and other necessary metadata in a predefined
memory layout.

(2) The host notifies the security monitor about the creation of
one enclave with its physical address and initial size. The
security monitor assigns a unique id to this enclave and binds
the id to its header address and size.

(3) The host finds an available CPU core and assigns the core to
one enclave, then switches to the core, invokes the security
monitor’s entering enclave function with the specific enclave
id as argument.

(4) The security monitor finds the corresponding enclave via
its id and assigns the enclave memory by manipulating the
VirTEE hardware registers. Afterwards, the security monitor
verifies the enclave signature by using a private key. If it fails,
the security monitor refuses to launch the enclave, otherwise
it performs context switching and hands over the control
flow to the enclave monitor’s entry point.

(5) The enclave monitor receives three arguments from the se-
curity monitor: CPU core id, device tree which contains all
devices information and the enclave memory header address.

(6) The enclavemonitor initializes the necessary virtualmachine
environment, e.g., second-level page table and virtual devices.
Peripherals are allocated and bind to the virtual machine.

(7) The enclave monitor hands over the control flow to the
virtual machine’s entry point,i.e., the virtual machine kernel
entry point.

(8) The virtual machine runs under the control of the enclave
monitor. The virtual machine can use the migration or at-
testation services by calling the interfaces exposed by the
enclave monitor.

4 EVALUATION
This section presents our thorough evaluation of VirTEE’s effec-
tiveness and efficiency regarding 1) Benchmark run-time perfor-
mance overhead, and 2) VirTEE features’ overheads on microbench-
marks including enclave initialization, attestation and live migra-
tion. For the run-time performance overhead, we selected standard
benchmarks (rv8 [3] and CoreMark [1]), which have been used by
CURE [12], the security architecture we build on, and real-world
software (OpenSSL 3.0.0 [10], Binutils [7] and SQLite [23]). For
VirTEE’s features, we evaluated enclave initialization, attestation
and migration overhead by measuring the average running time.
We did our experiments on a Intel(R) Core(TM) i7-9750H CPU @
2.60GHz laptop with 16 GB RAM. The QEMU simulator version is
6.0.50.

Implementation We implemented the security monitor on top
of OpenSBI. The hsm1 handlers are extended to support security
monitor environment call interfaces. Fourteen Maros are defined in
the security monitor to perform enclave creation, enclave memory
management and attestation primitives. We emulated a UART8250
serial port as console and a virtio block device as the hard drive
in the enclave monitor. In summary, enclave monitor, the security
monitor, and the host kernel required approximately 6700, 720, and
250 lines of C code respectively.

4.1 Run-time Performance Overhead
The run-time performance overhead mainly comes from RISC-V
second-level page-table address translation, device virtualization
(secure I/O) and VirTEE hardware. We selected standard bench-
marks and real-world software to test VirTEE’s performance over-
head. The selected benchmarks includes I/O intensive workloads
(Binutils, SQLite) and CPU intensive workloads (rv8, CoreMark,
OpenSSL). The hardware performance overhead has already been
discussed in CURE [12], therefore we treat performance overhead
induced by the CURE hardware as orthogonal. For each program,
1Hart State Management SBI extension

244

VirTEE: A Full Backward-Compatible TEE with Native Live Migration and Secure I/O DAC ’22, July 10–14, 2022, San Francisco, CA, USA

0

50

100

150

200

250

300

Native VirTEE

Figure 2: VirTEE’s run-time performance overhead relative
to native process

we run it for five times with and without VirTEE in the same simu-
lator and calculate the final average overhead.

I/O Intensive Workloads. We selected Binutils-strings and
Binutils-readelf, two popular binary analysis tools, to extract infor-
mation from an unstripped binary. The main performance overhead
comes from the console virtualization. For SQLite, we used the
SQLite kvtest program to generate a 1 GB test database file. Then
we ran kvtest to read blobs from the database file. The main per-
formance overhead comes from the hard-drive virtualization and
secure I/O. The experiment results show that VirTEE incurs 51%
and 52% overhead in strings and readelf respectively. For SQLite,
kvtest can read the database file in 54.7 MB/s and 87.7 MB/s with
and without VirTEE respectively. That means VirTEE incurs 61%
hard drive I/O overhead induced by hard-drive virtualization and
secure I/O.

We conducted the same experiments in an AMD SEV-enabled
platform with an AMD EPYC 7262 8-Core 3.2GHz Processor and
32GB RAM. The results show that AMD SEV incurs 532% and 214%
overhead for strings and readelf respectively. For SQLite, AMD
SEV incurs 25% hard-drive virtualization overhead. The reason
for VirTEE’s better performance for strings and readelf is that, for
console virtualization, VirTEE does not need to intercept the I/O
process and directly writes the data to output buffer. However,
for hard drive virtualization, VirTEE needs to intercept every I/O
process, parse the I/O arguments and performance encryption or
decryption while AMD SEV does not support secure I/O. Therefore,
VirTEE has a better virtual console performance and a worse virtual
hard-drive performance than AMD SEV.

CPU Intensive Workloads. We selected three asymmetric
crypto algorithm tests (dh, ecdsa and rsa) in OpenSSL’s test vec-
tors. CoreMark and rv8 use internal test data, therefore, we ran
those binaries directly. As shown in Figure 2, for the majority of
the benchmarks, VirTEE only incurs less than 15% overhead. An
exception is rv8-primes. The reason for that is that VirTEE does
not support floating-point registers yet, and rv8-primes performs a
lot of division operations. VirTEE has to use soft-floating point to
simulate the calculation which is much slower. This also happens
in OpenSSL tests as well. We did the same experiment in AMD
SEV, the results show that the SEV incurs an average of 15% over-
head on the whole test programs as SEV support real floating-point
registers.

4.2 VirTEE Feature Overhead
Enclave Initialization. The enclave initialization process mainly
includes continuous physical memory allocation, VM and enclave
monitor binary-files loading, metadata filling and integrity verifica-
tion. In our experiment, the initial enclave size is 500MB, consisting
of 100MB enclave monitor heap memory, 10MB enclave monitor
and 490MB VM. The enclave monitor binary file size is 59KB and
the VM kernel is 17MB. We filled the binary files to each part of the
memory head and zeroed the remainder. We run an enclave VM for
five times and calculate the average time. The result shows that the
enclave VM initialization approximately takes less than 150ms.

Location Attestation.We lunched two enclave VMs running in
parallel in a simulator. They run the same VM and enclave monitor
binary. Starting from the verifier’s first attestation call to the final
secure channel setup, we counted the time elapsed and repeated the
process for five times. The result shows that the location attestation
only takes 144 ms.

Remote Attestation. We simulated a remote attestation server
by directly feeding the verification result back to the platform. We
left the complete remote attestation system as future work. Starting
from receiving the verifier’s request to the final secure channel
setup, we counted the time elapsed and repeated the process for
five times. The result shows that the remote attestation only takes
less than 50ms.

Live Migration. We lunched two QEMU simulators in parallel.
The two simulators are bridged in one network card in the laptop.
Now the two simulators are running in the same LAN. One is
the target which contains a stub enclave and the other one is the
migration source which contains a normal enclave VM. We set
the bandwidth to 5MB/s. It takes 100 seconds to finish the second
migration step. For the third step, it depends on how many dirty
pages in the VM. In our experiment, we took two Binutils programs
as example, readelf and objdump contain maximum 1441 and 1652
dirty pages respectively which means they take approximate 1s and
1.2s to finish the final migration step.

5 RELATED WORK
Existing non-virtual machine based TEEs all require non-trivial
porting effort to support legacy applications. Intel SGX [8] provides
a SDK for programmers to develop SGX applications from scratch.
Programmers are supposed to manually define the trusted part,
untrusted part and their calling interfaces in a so called EDL file.
Although the SDK facilitates the development process, however,
complex commercial software are still hard to adapt themselves to
SGX. LibOS based solutions such as Graphene [32], Occlum [30],
SGX-LKL-OE [29], Fortanix [4], SCONE [11] try to port unmodified
legacy applications to SGX. However, they only support limited sys-
tem call interfaces, thus suffer from compatibility problems. Shim
library based solutions such asHaven [13] and Panoply [31] forward
system call requests to the operating system kernel by shielding
the enclave applications. Previous works show that they are prone
attacks through system call return values [15] [24]. Other TEEs
such as Penglai [19] and Keystone [25] provide their development
kit like SGX. The porting effort hinders the TEEs from being widely
adopted. In contrast, VirTEE can run unmodified applications in a
virtual machine and does not lead to extra attack surface.

245

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Cloosters et al.

Virtual machine based TEEs run unmodified applications in an
enclave. Compared with VirTEE, Intel TDX [9], AMD SEV [26]
and ARM CCA [6] isolate the virtual machine from untrusted part
including the hypervisor. In this design, the hypervisor has no
access to the virtual machine which means the virtual machine
kernel has to bemodified to support native livemigration and secure
I/O. In addition, the virtual machine kernel is required to clear the
sensitive data (e.g., general registers) before exiting the virtual
environment. As this design does not support native migration and
secure I/O, several works such as [28] [21] [27] [22] presented third
party solutions by using new instructions or security hardware
modules. VirTEE deploys a enclave monitor inside the enclave.
The enclave monitor is assumed to be a trusted component. It
encapsulates the secure I/O and livemigration functionalities for the
virtual machine so that VirTEE can seamlessly support unmodified
kernel.

We implemented VirTEE hardware based on CURE [12] which
provides a strong physical enclave memory isolation. However,
since there is no enclave monitor in CURE’s design, it does not
support unmodified kernel, native live migration and secure I/O.

6 CONCLUSION
In this paper, we proposes VirTEE. Based on RISC-V hypervisor
extension and VirTEE hardware, we overcomes the disadvantages
that most of state-of-the-art TEE solutions have. VirTEE is able
to run unmodified kernel and applications in a virtual machine in
enclave memory, providing full backward-compatibility. With its
novel design architecture, VirTEE supports native live migration
and secure I/O. The evaluation indicates that VirTEE only incurs
moderate performance overhead.

7 ACKNOWLEDGEMENT
This project was funded by the Deutsche Forschungsgemeinschaft
(DFG) SFB-1119 CROSSING/236615297. Moreover, this project has
received funding from Huawei within the OpenS3 lab.

REFERENCES
[1] 2009. EMBC. Coremark. https://www.eembc.org/coremark/.
[2] 2015. Security technology: building a secure system using TrustZone technology.

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/
TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-
3329b7f8a23e.

[3] 2018. rv8-bench. https://github.com/michaeljclark/rv8-bench.
[4] 2018. Side Channels and Runtime Encryption Solutions with Intel® SGX. https:

//www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf.
[5] 2019. RISC-V Secure Bootloader. https://riscv.org/wp-content/uploads/2019/06/

13.55-RISC-V-Workshop-Secure-Bootloader.pdf.
[6] 2021. Arm Confidential Compute Architecture. https://documentation-service.

arm.com/static/61825631f45f0b1fbf3a7a7d?token=.
[7] 2021. GNU Binutils. https://www.gnu.org/software/binutils/.
[8] 2021. Intel® Software Guard Extensions. https://software.intel.com/sites/default/

files/managed/48/88/329298-002.pdf.
[9] 2021. Intel® Trust Domain Extensions. https://www.intel.com/content/

dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-
348549001.pdf.

[10] 2021. OpenSSL. https://www.openssl.org/.
[11] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. 2016. {SCONE}: Secure linux containers with intel {SGX}. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16). 689–703.

[12] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. {CURE}: A Secu-
rity Architecture with CUstomizable and Resilient Enclaves. In 30th {USENIX}
Security Symposium ({USENIX} Security 21).

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 1–26.

[14] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves.. In NDSS.

[15] Stephen Checkoway and Hovav Shacham. 2013. Iago attacks: Why the system
call api is a bad untrusted rpc interface. ACM SIGARCH Computer Architecture
News 41, 1 (2013), 253–264.

[16] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2. 273–286.

[17] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX} Security
Symposium ({USENIX} Security 16). 857–874.

[18] Liang Deng, Qingkai Zeng, and Yao Liu. 2015. ISboxing: An instruction substi-
tution based data sandboxing for x86 untrusted libraries. In IFIP International
Information Security and Privacy Conference. Springer, 386–400.

[19] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). USENIX Association, 275–294. https://www.usenix.org/
conference/osdi21/presentation/feng

[20] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using verification to disentangle secure-enclave hardware from soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles.
287–305.

[21] Jinyu Gu, Zhichao Hua, Yubin Xia, Haibo Chen, Binyu Zang, Haibing Guan, and
Jinming Li. 2017. Secure live migration of SGX enclaves on untrusted cloud. In
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 225–236.

[22] Joao Guerreiro, Rui Moura, and Joao Nuno Silva. 2020. TEEnder: SGX enclave
migration using HSMs. Computers & Security 96 (2020), 101874.

[23] Richard D Hipp. 2020. SQLite.
[24] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi Wang, and Tao Wei.

2020. COIN attacks: On insecurity of enclave untrusted interfaces in SGX. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 971–985.

[25] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[26] Ingo Lütkebohle. 2016. AMD Secure Encrypted Virtualization.
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_
Encryption_Whitepaper_v7-Public.pdf.

[27] Jaemin Park, Sungjin Park, Brent Byunghoon Kang, and Kwangjo Kim. 2019.
eMotion: An SGX extension for migrating enclaves. Computers & Security 80
(2019), 173–185.

[28] Jaemin Park, Sungjin Park, Jisoo Oh, and Jong-Jin Won. 2016. Toward live
migration of SGX-enabled virtual machines. In 2016 IEEE World Congress on
Services (SERVICES). IEEE, 111–112.

[29] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,
Vasily A Sartakov, and Peter Pietzuch. 2019. SGX-LKL: Securing the host OS
interface for trusted execution. arXiv preprint arXiv:1908.11143 (2019).

[30] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 955–970.

[31] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves.. In NDSS.

[32] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-sgx: A practical
library {OS} for unmodified applications on {SGX}. In 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17). 645–658.

[33] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2014. CODOMs: Protecting software with code-centric memory domains. ACM
SIGARCH Computer Architecture News 42, 3 (2014), 469–480.

[34] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

246

https://www.eembc.org/coremark/
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e
https://github.com/michaeljclark/rv8-bench
https://www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf
https://www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf
https://riscv.org/wp-content/uploads/2019/06/13.55-RISC-V-Workshop-Secure-Bootloader.pdf
https://riscv.org/wp-content/uploads/2019/06/13.55-RISC-V-Workshop-Secure-Bootloader.pdf
https://documentation-service.arm.com/static/61825631f45f0b1fbf3a7a7d?token=
https://documentation-service.arm.com/static/61825631f45f0b1fbf3a7a7d?token=
https://www.gnu.org/software/binutils/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.openssl.org/
https://www.usenix.org/conference/osdi21/presentation/feng
https://www.usenix.org/conference/osdi21/presentation/feng
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20170126085122
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 5.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 5.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

