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Abstract

Coverage-Guided Fuzzing (CGF) has become the most popular and
effective method for vulnerability detection. It is usually designed
as an automated "black-box" tool. Security auditors start it and then
just wait for the results. However, after a period of testing, CGF
struggles to find new coverage gradually, thus making it inefficient.
It is difficult for users to explain reasons that prevent fuzzing from
making further progress and to determine whether the existing
coverage is sufficient. In addition, there is no way to interact and
guide the fuzzing process.

In this paper, we design the dynamic directed greybox fuzzing
(DDGF) to facilitate collaboration between the user and fuzzer. By
leveraging Ball-Larus path profiling algorithm, we propose two new
techniques: dynamic introspection and dynamic direction. Dynamic
introspection reveals the significant imbalance in the distribution
of path frequency through encoding and decoding. Based on the
insight from introspection, users can dynamically direct the fuzzer
to focus testing on the selected paths in real time. We implement
DDGF based on AFL++. Experiments on Magma show that DDGF
is effective in helping the fuzzer to reproduce vulnerabilities faster,
with up to 100x speedup and only 13% performance overhead. DDGF
shows the great potential of human-in-the-loop for fuzzing.
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1 Introduction

In recent years, coverage-guided fuzzing (CGF) [1, 38, 47] has be-
come one of the most effective ways to detect vulnerabilities. Test
cases that explore new coverage are added to the queue as seeds for
subsequent mutations, which helps the fuzzing to evolve towards
expanding coverage, gradually exploring the unknown areas of
the program. The effectiveness of CGF has been proven in exten-
sive practice. It has attracted widespread academic research[13, 17,
18, 22, 23, 25, 26, 45] and large-scale industrial deployment. In the
0SS-Fuzz[10] project, Google conducts 24/7 continuous fuzzing on
integrated open source projects. As of August 2023, OSS-Fuzz has
helped identify and fix over 10,000 vulnerabilities and 36,000 bugs
across 1,000 projects.

However, the limitations of CGF are overshadowed by the tremen-
dous success in the industry. An inevitable problem is that fuzzing
will get stuck after a period of time. It means that the fuzzer strug-
gles to discover new coverage, the seed queue stops changing, and
the efficiency will drop sharply. Bohme et al.[16] systematically
analyzed the relationship between vulnerability discovery time,
code coverage, and the number of fuzzing machines. The empirical
study reveals that the difficulty of discovering new vulnerabilities
increases exponentially after the coverage reaches the plateau. For
most projects, coverage bottlenecks are typically reached within 24
hours. However, although CGF is a greybox testing method, it is
usually used as the "black-box" tool in practice. Security auditors
prepare the initial corpus, start fuzzing, and just wait for results.
When the fuzzer gets stuck, it is difficult for users to find the reason
why fuzzing is blocked and there is no way to interact and guide
fuzzing effectively. As the two key questions raised in the paper
"Fuzzing: Challenges and Reflections"[15]:

RQ1. How can the fuzzer explain what prevents it from
progressing ? RQ2. How can we facilitate a more effective
communication between fuzzer and security auditor ?

We interpret the questions as : 1. how to expose more interme-
diate states from fuzzing, and 2. how security auditors can direct
fuzzing process based on these intermediate states. In this paper,
we try to answer these two questions. We propose the dynamic
directed greybox fuzzing called DDGF. DDGF includes two subsys-
tems: dynamic introspection and dynamic direction, corresponding
to the two questions respectively.
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Dynamic Introspection aims to expose the intermediate states
of the fuzzing process in real time. Based on the Fuzz-Introspector[5],
we transform its post-processing way into real-time processing by
memory mapping. Different coverage status can be displayed at
fuzzing runtime, which will be used to support the dynamic direc-
tion subsystem. In addition to basic-block/line coverage and block-
ing branches, we introduce the Ball-Larus path profiling algorithm[14]
to encode paths within functions. With path encoding and decod-
ing, we record and display the path hit frequency for all seeds in the
queue dynamically. By analyzing the coverage data, we can see the
significant imbalance in distribution of path frequency. Less than
20% of paths account for 80% of hits. Fuzzing wastes too much time
on these paths, which prevent vulnerabilities from being triggered.

Dynamic Direction. We use the encoding number of paths as
the key for communication between the user and the fuzzer. Based
on the coverage information and insight from dynamic introspec-
tion, Security auditors are able to add flags for selected paths and
push the fuzzer to focus testing on them. The flags will influence
the seed selection stage in fuzzing loop and the seeds with flags
will be prioritized. Users are able to direct the fuzzer’s attention to
target areas of code and help to discovery vulnerabilities faster.

Compared with distance-based directed greybox fuzzing(DGF)
such as AFLGo[17, 21, 24, 35], "dynamic" indicates that it allows
users to dynamically change or add target paths at any time. Tradi-
tional DGF "statically” instrument the hard-coded distance into the
program during compilation. If the user want to change the target
sites, they have to regenerate the distance by heavy static analysis
and recompile the program. The instrumentation of path profiling
in DDGF is target-independent and it provides a great interface for
interaction.

Evaluation. We evaluated the effectiveness of DDGF on Magma
benchmark[29] and real programs. The experiment results show
that DDGF is able to provide us with more insight on fuzzing and
help to reproduce vulnerabilities faster, with up to 100x speedup in
some programs. The performance overhead from instrumentation
and interaction is only 13%.

At last, We illustrate the role that humans play in DDGF with
three case studies which represent three different flagging strategies.
For some cases, where AFL++ took about 20 hours, we got 10x
speedup by just flagging one path. It demonstrates the value of
insight from humans, whose key flags brought significant speedup
to fuzzing. Moreover, we detected 4 unknown vulnerabilities with
2 CVE IDs during the experiment.

In summary, the contributions of this paper are as follows:

o We designed and implemented the dynamic directed fuzzing
system called DDGF to facilitate collaboration between hu-
mans and fuzzers. DDGF includes two subsystems: dynamic
introspection and dynamic direction.

e We proposed the dynamic introspection subsystem. It en-
codes and decodes paths using the Ball-Larus profiling algo-
rithm to show path-level hit frequency in real time, which
provides more insight for users to guide the fuzzing process.

e Based on dynamic introspection, we are first to propose the
concept of dynamic direction for fuzzing. Dynamic direction
supports users to change target paths at any time and direct
the fuzzer to focus testing on these critical paths and regions.
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In the following sections, we first introduce relevant background
on fuzzing. Next, we describe the motivation and challenges through
the example. Then we present the dynamic introspection and dy-
namic direction subsystem in DDGF respectively. Finally, we discuss
the implementation and evaluation of DDGF.

2 Background
2.1 Greybox Fuzzing is not a Black Box

The key to the success of greybox fuzzing lies in the evolutionary
algorithm [47]. Test cases that discover new coverage will be added
to the queue to serve as seeds for subsequent mutations. However,
after fuzzing has been running for a period of time, it becomes
increasingly difficult to find new coverage[15, 33]. The lack of new
seeds leads to a significant drop in testing efficiency. In this context,
it is difficult for users to explain the cause of the blockage and
determine whether existing coverage is sufficient. This inspires us
to think about how to expose more intermediate states of fuzzing,
and how users can guide the fuzzing process.

In June 2022, the OpenSSF released Fuzz-Introspector[5], an open
source tool that aggregates data collected during fuzzing to gen-
erate comprehensive reports. Fuzz-Introspector helps developers
better understand the fuzzing process and make improvements. The
project is under active development and is currently the official test
report display platform for OSS-Fuzz[10, 11]. There has been some
research[28, 44] to analyze fuzzing coverage and bottlenecks based
on Fuzz-Introspector.

2.2 Human-in-the-Loop for Program Analysis

Computers have better speed and accuracy, while humans have
deeper insight and global perspective. Automated analysis method
such as data-flow analysis and fuzzing are not able to understand
the semantics of programs. The analyzer takes a general and ab-
stract view to explore the program, such as transfers on the control
flow graph. Vulnerabilities are reasoned and detected by computing
data dependency or interval on these abstract data. This fundamen-
tally limits the capabilities of analyzers. For example, an automated
analyzer is unable to understand the logic of the game and just
tries to shift on the control flow. However, humans are able to
easily trigger entirely new areas of code based on game logic and
semantics[4]. Therefore, if the program analysis tool can expose
more intermediate states, integrate human insights into the vulner-
ability detection process, and fill in semantic information gaps with
human-computer interactions, it will greatly enhance the capabili-
ties and efficiency of analysis tools.

After the CGC[3] project, DARPA recognized the importance of
human-in-the-loop for vulnerability discovery and proposed the
CHESS[4] (Computers and Humans Exploring Software Security)
research project. CHESS aims to develop human-computer col-
laborative systems to detect zero-day vulnerabilities by combining
human insights and computers. So far, the implemented subprojects
include the static analyzer MATE[7] based on the code property
graph and the integrated symbolic execution engine Manticore.
Users can inspect static analysis results through an interactive in-
terface, set source-sink for taint analysis, and provide additional
constraints for symbolic variables, etc.
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2.3 Directed Greybox Fuzzing

Directed Greybox Fuzzing (DGF) [17, 31, 32, 35] can guide the
fuzzing direction towards target sites, which is used for patch test-
ing, vulnerability reproduction, etc. The pioneering work of DGF
is AFLGo[17]. It computes the distance from the execution path to
the target sites by static analysis and assign more energy to seeds
closer to the target based on the simulated annealing algorithm.
Hawkeye[21] proposes corresponding optimization methods for
AFLGo, such as considering indirect calls, optimizing distance met-
rics, etc. By lightweight static analysis, Beacon[30] instruments the
weakest preconditions to terminate unreachable paths in advance.
Basically, these methods inherit the overall workflow of AFLGo,
hard-coding the constant distance statically in basic blocks dur-
ing compilation. For this approach, it is difficult to dynamically
change or set targets to guide the fuzzing at runtime. However,
we believe that directed greybox fuzzing is a kind of prototype
of human-computer collaboration, which has great potential for
improvement.

3 Motivation & Challenge

In this section, we illustrate our research motivation and corre-
sponding challenges through an example.

3.1 Motivating Example

Switch-case statements often match the program states or key
options. Security auditors can easily understand the local program
logic through the case name.

Listing 1: Motivating Example

int wavlike_read_fmt_chunk (SF_PRIVATE «psf, int fmtsize) {

1

2

3 switch (wav_fmt->format) {

4 case WAVE_FORMAT IMA_ADPCM:
6 break;

7 case WAVE_FORMAT GSM610:

9 break;

case WAVE_FORMAT_ EXTENSIBLE:

// heap overflow (commit a8ab5b3)
// how to focus this case in fuzzing?

1;1}

The above code Listing 1 shows a snippet of a heap overflow
vulnerability (Commit a8ab5b3) in the libsndfile library, which is
an encoding/decoding library for common audio formats. We can
easily see that the vulnerability is only triggered when the parsed
WAVE format is EXTENSIBLE. If we want to reproduce this vulner-
ability faster, it’s natural that we want to exclude other branches
and have as many test cases as possible that meet the EXTENSIBLE
format. When we have preferences for testing some paths,
how to tell the fuzzer? For this example, how can we direct
fuzzing to focus on a specific case in the switch statement?

This inspires us that the security auditors need a communication
way to tell fuzzers that this case is the most important path to trigger
the vulnerability. Once a seed is EXTENSIBLE format, it should take
priority over other seeds, because the mutation results of this seed
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are more likely to be the same format. Imagining that there are
100 seeds in the queue, and only 5 of them are the EXTENSIBLE
format. We should prioritize mutating these seeds to accelerate
vulnerability triggering. Traditional DGF such as AFLGo allocates
different energy to seeds based on the distance to the target point.
However, for the above example, the path distance is nearly the
same for different cases, making it difficult to direct fuzzing to a
specific case statement.

3.2 Challenges

The motivating example above inspires us to think about how to
guide fuzzing to test target paths as much as possible. It includes
two parts: 1. how to describe paths and show coverage status; 2.
how users can use the status to direct fuzzing. We need to address
the following three challenges.

Path Description. We want to establish the connection between
users and the fuzzer, so it is crucial that both the fuzzer and the user
share the same or similar view of the code. However, the design of
coverage instrumentation in popular fuzzers makes it difficult to
support this. For example, an edge is represented by the XOR of the
random IDs of two basic blocks in AFL, and the hit count is stored in
the bitmap with the edge ID. This code-bitmap mapping is one-way
and cannot be interpreted by users. It is not easy to map the ID from
the bitmap back to the corresponding edge. AFLFast[18] uses the
hash of the entire trace_bit array to distinguish different paths and
count the hit frequency. This is also irreversible and unexplainable.
We need a way to describe a path, which is both understandable
and efficient for users and fuzzer.

Dynamic Directing Method. To enable interactions, it should
allow users to view and select paths in real time. In coverage-guided
fuzzing, the goal of evolutionary algorithm is to expand coverage
as much as possible. The fitness function is set to reward test cases
that discover new edge coverage. Once we can describe paths and
communicate with the fuzzer, we need a method to interact with
the existing coverage-driven evolutionary algorithm. This would
guide the fuzzer to intensively test the paths selected by user at
runtime. Moreover, this user-involved directing approach should be
transparent to fuzzing. If there is no interaction or direction from
users, the fuzzer can still run in the way of increasing coverage.

Performance Overhead. In order to support users to check
fuzzing coverage status and dynamically guide fuzzing, we need to
expose these intermediate states in real time. The Fuzz-Introspector
uses the post-processing way, and the instrumentation brings the
additional overhead. If the overhead is too high, it will slow down
the fuzzing speed. This could potentially lead to directed fuzzing
being less capable than general coverage-guided fuzzing. Balancing
performance and additional features is a significant challenge. There
is always a trade-off.

4 Approach

In this chapter, we first introduce the overall architecture of Dy-
namic Directed Greybox Fuzzing (DDGF). DDGF consists of two
subsystems: dynamic introspection and dynamic direction, which
allows users to inspect intermediate states and direct fuzzing in real
time. When users discover low-frequency or potential vulnerable
paths by introspection, they can dynamically add flags for these
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Figure 1: Design Overview of DDGF

paths. This will direct the fuzzer to test these paths as much as pos-
sible, thus to detect vulnerabilities more efficiently. We will explain
the details of two subsystems respectively.

4.1 Design Overview

Algorithm 1 Fuzzing Loop in DDGF

Input: Seed Inputs S, PathProfiling Instrumented binary bin, Ex-
ternal Shared PathProfiling File pp_file
Output: Crash Outputs C
1: for eachs € S do
2 s.flag <« PathProfiling(bin, s, pp_file)

3. end for

4: repeat

5: s < chooseNext(S) // prioritize seeds with flag
6:  p « assignEnergy(s)

7. fori=1topdo

8 s’ « mutatelnput(s)

9: if s” crashes then

10: adds’ to C

11: else if s’ isInteresting then

12: s’.flag « PathProfiling(bin, s’, pp_file)
13: add s’ to S

14: end if

15:  end for

16: until timeout reached or abort signal

Figure 1 shows the overall design architecture of DDGF. We can
see there are two loops. The lower loop is a typical coverage-guided
fuzzing process. Seeds are taken from the queue and mutated to
generate test cases, which are fed to the target program for execu-
tion. If the test case discovers new coverage, it will be added to the
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queue as a seed for subsequent mutations. The upper loop is our
dynamic introspection and direction system. When a new seed is
added to the queue, another target binary program instrumented
with path profiling will be executed once with that seed as input.
Path profiling is used to analyze path-level hit counts of all seeds,
and combined with fuzz-introspector to display line/block/function-
level coverage and blocking branches. Path profiling establishes a
way for the fuzzer to communicate with the user, which builds the
dynamic direction subsystem. More specifically, users can analyze
the hit frequency distribution of different paths using introspection,
and dynamically add flags for specific paths such as low frequency
but critical paths. Seeds that go through these selected paths will
get the flag. The flags will affect the seed selection stage in fuzzing
loop and the seeds with the flag will be preferentially selected. In
evolutionary algorithms, if seeds carrying certain character-
istics are preferentially selected each time, their mutations
are also more likely to carry the certain characteristics. That
is, fuzzing can evolve towards these flagged paths. In addition,
the flags added by users are transparent to the fuzzer. If no flags are
found, fuzzer will still proceed in the status of expanding coverage.
Users can switch fuzzing modes at any time.

Algorithm 1 illustrates the fuzzing loop in DDGF. First, we need
to compile the program with path profiling instrumentation and
get a special binary program bin. On the one hand, this program is
used for introspection to count path frequency. On the other hand,
we use it as an interface between fuzzer and user. Users can add
flags for the selected paths before fuzzing starts or gradually add
flags at runtime, both of which can be done by simply modifying
pp_file with python scripts. During the whole period of fuzzing,
bin will be executed in two different stages: @ Before fuzzing starts.
@ Finding a new seed. The seeds with the flag will be selected with
priority. We use the shared memory-mapped file pp_file for the
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path counters and flag reading/writing. More details are provided
in Section 4.3.

4.2 Dynamic Introspection

Path Profiling. In related fuzzing research work such as JMPScare[36]
and Fuzz-Introspector[5], introspection refers to reporting various
states of the program under test, such as coverage information
and blocking branches. As mentioned in the challenges above, in
order to support directed testing of selected paths, we first need a
way to describe the path. Therefore, we introduce the Ball-Larus
algorithm[14] for path profiling.

Path profiling describes the dynamic control flow behavior for a
program. It records the sequence of instructions executed within
functions for each test case, which can help to analyze the behavior
of the function. Ball and Larus proposed an efficient path profiling
algorithm. Their approach provides an encoding and decoding
strategy that allows us to map any path in a directed acyclic graph
to a unique integer.

(b) Eliminate Backedge

Path Encoding
ABDEG 0
ABDEFG 1
ABDH 2
ACDEG 3
ACDEFG 4
ACDH 5
DEG 6
DEFG 7
DH 3

(c) Tnstrumentation Value

(d) Path Encoding

Figure 2: Ball-Larus Path Profiling

The Figure 2 demonstrates the simplified workflow of Ball-Larus
algorithm. For the CFG with loops, we convert it into the directed
acyclic graph (DAG) by eliminating the backedge. For instance, for
a backedge v -> w, the steps are as follows: @ Add a dummy edge
ENTRY -> w. ® Add a dummy edge v -> EXIT. ® Eliminate the
backedge. At the end of the algorithm, we can calculate a unique
encoding value for each path in the CFG, which is used as the path
ID. Moreover, we can easily map the path ID back to the corre-
sponding path in the CFG with decoding algorithm. We instrument
a special function at the end of the path to count the hits during
the runtime. Besides, path ID is not only used for introspection, but
also provides an important interface to implement the direction
subsystem in DDGF. We will discuss the details in the next section.

Two-Files Fuzzing Strategy. To reduce the performance over-
head of path profiling instrumentation, we adopt the two-files
fuzzing strategy. The path profiling instrumented binary is com-
piled separately. By sampling paths hit by all seeds, we can get the
distribution of hit frequency. As shown in the Algorithm 1, just after
fuzzing starts and before new seeds are added to the queue, we run
the path profiling instrumented binary for them. Thus we maintain
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the set of all executed paths and their hit frequency during the
runtime of fuzzing. The overhead of path profiling instrumentation
is amortized over the mutation of each seed, with small impact on
fuzzing speed.

From Post-Processing to Dynamic Introspector. Through post-
processing, Fuzz-Introspector can extract information such as line
coverage and blocked branches of the target program. However,
it does not support dynamic (real-time) display. Inspired by the
continuous mode in LLVM profile-guided optimization[6] (PGO),
we constructed dynamic introspector by mapping the different
coverage information from memory to files in real time through
mmap. This is an engineering challenge, but it is very necessary.
Dynamic introspector allows us to view different coverage informa-
tion, including path-profiling, in real time. It provides a platform
for human-fuzzer interaction and direction.

4.3 Dynamic Direction

In this section, we will introduce the dynamic direction subsystem.
For the upper loop in Figure 1, users can check the path frequency
distribution in real time with introspection, and map the path ID
back to the path in the source code with decoding. If users have spe-
cific requirements, such as increasing the test probability of some
low-frequency paths or testing a certain case in switch statement
as much as possible, they can flag the relevant paths and then direct
fuzzer to test these areas. Next, we will introduce the details of
path flagging and seed selection in dynamic direction subsystem of
DDGF.

Path Flagging. Path flagging plays a very important role in
the DDGEF. It provides a key interface for users to interact with
fuzzer, because the path ID is understandable for both of them.
Users can add flags to the path based on the introspection results.
The flags will be written into an external shared profiling file. When
the program executed into the instrumented function, it checks
whether the current path is flagged or not and then return it to
fuzzer. Total flags are accumulated in different functions. Fuzzer
will set the flag for current seed. The seeds with the flag will be
prioritized in the fuzzing loop. It is worth noting that the runtime
overhead from instrumentation is relatively low due to the two-files
fuzzing strategy mentioned before.

Algorithm 2 Instrumented Function: update_counters_flags

Input: current_func, path_id, pp_file, Global total_flags
Output: total_flags
1: flag = get_flag_from_£file(pp_file, current_func, path_id)
2. if flag == 1 then
3. total_flags++ // accumulated in different functions
4: end if
5: update_hit_counters( pp_file, current_func, path_id)

In Algorithm 2, we describe the function update_counters_flags ,
which is instrumented at the end of paths in profiling algorithm.
This function has two purposes: @ To count the frequency of the
current path, and @ To check if the path has been flagged by the
user. The flags are accumulated in the global variable total flags,
which represents the total number of flags paths encountered across
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all functions for the current seed. We use shared container in Boost
library to build the pp_file. It is implemented by memory mapping,
which is very fast and helps to reduce the runtime overhead. Users
can also read and write the pp_file, and view or add the flag for
paths with python script or web GUL

Seed Selection. Our directing approach is based on a natural
but effective observation in evolutionary algorithms: if the seeds
selected for mutation always have some certain characteristics, the
mutated results are more likely with these characteristics. It means
that if we preferentially select seeds with the flag for mutation, we
will increase the probability of testing these flagged paths.

The existence of flags also gives the other stages of fuzzing loop
a chance to have an indirect effect on the seed selection results.
However, if we change the feedback strategy, e.g., by adding only
flagged seeds to the queue, it will seriously affect the queue size.
This makes fuzzing difficult to recover to the original coverage-
guided mode and may fall into a local optimum. If we want to
recover from directed mode to the coverage-guided mode, we just
need to make it ignore the flag. Changing the seed selection method
based on flags will not do damage to the original seed queue.

Algorithm 3 Constraints for update_bitmap_score

Input: top_rated_arrays, current_seed s
Output: top_rated_arrays
1: if directed_mode && s.flag == 0 then
2:  return;
3. end if
4: update_bitmap_score(s)

We prioritize seeds with the flag, pushing fuzzing to focus on
these flagged paths. Once fuzzer has explored the flags, the di-
rected mode is turned on. Specifically, we change the seed selec-
tion process through the update_bitmap_score function in AFL++.
top_rated[bitmap_size] is an array used in seed selection algorithm
of AFL. It records the winner of each edge, i.e., the seed with the
shorter length and faster execution time. As shown in Algorithm 3,
in directed-mode, we add a constraint that seeds without the flag
will not be eligible to compete. Eventually, there are more winners
with the flag in top_rated array. These winners will be marked as
favored in the cull_queue by its greedy algorithm, thus improv-
ing the chances of being selected. If we add flags at run-time, we
will dynamically change the direction of fuzzing and influence the
evolution of fuzzing continuously.

Directing the Fuzzer Step by Step. The dynamic direction sub-
system allows the user to dynamically add flags. For example, if we
want to reproduce a vulnerability, we can add flags for the relevant
paths in the top function of stack trace. However, we may find
that the fuzzer does not explore the target paths and never enters
the directed mode, or we may get too few seeds with the flag and
may fall into a local optimum. In this context, we can add new
flags dynamically. For example, we can add flags for the previous
function in the stack trace, thus increasing the chance of finding
flags. In this way, we can direct the fuzzing step by step.
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Figure 3: Dynamic Introspector

Figure 4: Line Coverage

Figure 5: Path Frequency and Decoding in CFG

4.4 Implementation

We implemented dynamic directed greybox fuzzing based on AFL++.
Initially, we implemented Ball-Larus path profiling algorithm our-
selves, about 1500 lines of C++ code. Now we have modified and
ported the Path Profiling in legacy clang-3.1 to afl-clang-Ito-14. We
created a web GUI based on D3.js[2] and Echarts to support various
information display such as path frequency sorting, path decoding,
coloring, etc. We combined it with fuzz-introspector to implement
the Dynamic Introspector. We used LLVM PGO’s[6] continuous
mode to convert the post-processing into a real-time version. More-
over, we implemented decoding and path display with python, so
that users can visually inspect and flag related paths. Note that our
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CFG can be associated with source code line numbers, thus support-
ing path inspection on the source code. Based on memory-mapped
files in Boost library[9], we implemented the real-time updating
and flagging for path-profiling files. Users can add the flag for paths
at any stage of fuzzing.

Figure 3 displays the dashboard of our dynamic introspection
system. During the fuzzing process, we can visually observe the
testing status of each function in real time based on the depth of
colors. Moreover, as shown in the Figure 4, each function can be
directly linked to its corresponding source code. The path execution
frequency within the function is shown in real time by the dynamic
sorting diagram in the bottom right corner. As shown in Figure 5,
we can decode a certain path and display it in CFG.

5 Evaluation

In this section we evaluate the effectiveness of DDGF. As we men-
tioned in the introduction, to address two key RQs in "fuzzing
challenges and reflections", DDGF is designed to facilitate collabo-
ration between users and fuzzers to improve fuzzing efficiency. For
the two subsystems of DDGF, we propose the following three more
specific research questions.

RQ1. Does the dynamic introspection subsystem actually
provide more insights about fuzzing ?

RQ2. Based on these insights, could we use the dynamic
direction subsystem to reproduce bugs faster ?

RQ3. What is the performance overhead of DDGF?

We evaluated DDGF on the Magma[29], a benchmark now widely
used for fuzzing evaluation. Magma contains real bugs, which are
sourced from bug reports and forward-ported to the most recent ver-
sion of the target codebase. The magma_log function instrumented
at the source code checks whether a vulnerability is triggered.

We analyzed 25 CVEs on Magma and most of them could be dis-
covered by AFL++ within 24 hours. We conducted every experiment
10 times. For programs that the vulnerabilities were discovered
within 2 hours, the time budget was 2 hours. And for vulnerabilities
that take longer than 2 hours, the time budget was set to 24 hours.
All experiments are conducted on a computer running Ubuntu
20.04 LTS with an i7-10700 CPU and 64GB memory. The version of
Clang/LLVM is 14.0.1.

5.1

In this section, we evaluate the introspection subsystem. We want
to know whether introspection with path profiling can actually
provide more insights for users.

As shown in Figure 6, we list the path frequency distribution
of some vulnerable functions where the function magma_log is
instrumented. The distribution has a typical long-tailed shape. For
most functions, there is a huge imbalance in path frequency. Less
than 20% of the paths accounted for more than 80% of the hits.
During real-time monitoring, this imbalance grows as the number of
seeds increases. After a while, the seeds in the queue stop increasing
and the frequency distribution stabilize.

We decode and analyze the top 2 most high-frequency path IDs
and find that the execution of many high-frequency paths prevents
vulnerability triggering. We highlight these paths in red. These
paths usually go through guard expressions that cause the function

Dynamic Introspection Subsystem
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Figure 6: Path frequency of the vulnerability function. Block-
ing paths are highlighted in red.

to exit directly, such as checking the front characters, or going to
other cases in the switch statement and then breaking directly.

Listing 2: Code Snippet for Illustrating Path Frequency

1 const xmlChar *

2 xmlParseEncodingDecl(xmlParserCtxtPtr ctxt) {
3 xmlChar +encoding = NULL;

4 if (CMP8(CUR_PTR,

5 'e','n','c",'0",'d",'i",'n",'g")) {
6 //

7 // MAGMA(XML009)

s

9 return ;

10 }

We take XMLO009 as an example, and the related code is shown in
code Listing 2. It is a function that parses an encoding declaration
in XML. The distribution of path frequency is shown in Figure 6(b).
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By decoding the top 2 most high-frequency path IDs, we find that
the first path is a blocker. Nearly 80% of the hits are rejected at the
first if statement, which is used to check the "encoding" string, and
the function returns directly. The encoding string check is not a
branch blocker in line-level fuzz-introspector because there are still
some test cases that satisfy it. We can use dynamic introspection to
captures well that fuzzing consumes a lot of computation resources
here, which doesn’t help with the testing of the xmlParseEncod-
ingDecl function.

Naturally, we want to evaluate the effectiveness of dynamic
direction subsystem and to see if it really can help fuzzing to focus
on paths that pass the encoding branch to trigger XML009 faster.

Summary: The introspection subsystem does provide us with
more insight on fuzzing. With path decoding and frequency
analysis, we identified paths that hinder the detection of
vulnerabilities. Fuzzing wasted too much time on these paths.

5.2 Dynamic Direction Subsystem

In this section, we evaluate the dynamic direction subsystem. We
will introduce three different flagging strategies and demonstrate
how DDGEF helps users identify fuzzing bottlenecks through three
case studies. Based on different vulnerability context and introspec-
tion results, we add flags for some paths to accelerate vulnerability
reproduction. We compare with baseline AFL++(v4.07) to evaluate
whether the direction subsystem in DDGF actually works, whether
it actually directs fuzzer to focus on flagged paths and trigger vul-
nerabilities faster.

Flagging Strategy: In the above example of XML009, accord-
ing to our assumptions, if we prioritize the seeds that pass the
encoding check, i.e., the input file contains the "encoding” string,
then the probability that mutated test cases passing it will increase
significantly. This would increase the probability of triggering the
vulnerability, as more test cases would be directed to near the vul-
nerability. According to the introspection experiments and analysis
above, we only need to check whether the top 1-2 highest frequency
paths in the vulnerability function contribute to the triggering or
not by introspection, because less than 20% of the paths accounted
for more than 80% of the hits. If they prevent vulnerability from
being triggered, then we exclude them and add flags for all the
remaining paths. If they are not blocking, we add flags for all the
paths. We set them as the first and default flagging strategy. How-
ever, we found that this flagging strategy is ineffective for some
vulnerabilities that take a long time to trigger. For example, the
vulnerable function in TIF008 was still not explored after 15 hours.
If we only flag the vulnerable function, fuzzing will not enter into
the directed mode for a long time. In this case, we can trace back to
the relevant call sites through dynamic introspection and flagging
the upstream functions. We summarized three main flagging strate-
gies that we use in experiments. These different strategies will be
discussed through three case studies in the next section.

Results: The experiment results are shown in the Table 1. DDGF
shows amazing ability to reproduce these bugs faster. For libsndfile,
5 of 7 vulnerabilities are reproduced in less than 20 seconds, which
is up to more than 400 times faster compared to AFL++. For vulner-
abilities that take the longer to trigger, we also get good results. For
TIF008/SSL020/PDF003/010, the speedup is about 10x. Especially
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Table 1: Average reproduction time of 10 rounds for each tar-
get in the Magma benchmark compared with AFL++. #Flags
indicates the number of paths flagged in the experiment, and
Strategy indicates the specific type of flagging strategy used.

BugID AFL++ DDGF Speedup #Flags Strategy
SNDO001 7.41m 4s >100x 13

SNDO005 15.22m 2s >400x 4

SNDO006  39.30m 16s >140x 4

SNDO007  20.01lm 13s >90x 16 1
SND017  1348m 2.21m 6x 62

SND020  30.25m  3.19m 10x 62

SND024 14.39m 6s >140x 10

TIFO12 4.39m 0.98m 4.5x 1 2

TIF014 429m  2.11m 2x 11
TIFO14-cp 34.24m  6.89m 5x 11 1
XML003 12.71m  7.15m 1.7x 22

XML009 11.8m 2.28m 5x 22

PNG007 1.62h 0.49h 3.3x 2

TIF002 13.3%h 4.35h 3.0x 1 9

TIF008 19.88h 1.67h 11.9x 1

SQL002 12.4m 10.6m 1.1x 3

SQLo014 2.07h 0.73h 2.8x 21

SQL018 1.31h 0.76h 1.7x 8

SQL020 10.0h 2.0h 5x 3

SSL020 17.6h 1.86h 9.5x 10 9
PDF003 1.86h 11.5m 9.7x 6

PDFO010 2.13h 2.29m 55x 36 1
PDF019 T.O 16.9%h >1.4x 110

PDF018 19.67h 42s >1600x 1 9
PDF021 T.O T.O - 6

for PDF018, our flagging strategy achieved great success, with an
average reproduction time of under 1 minute and a speedup of over
1600 times. It is worth noting that we just add one flag. To our
knowledge, it is much faster than all known distance-based
directed fuzzers for most bugs.

Why is DDGF so fast ? The key to our directing approach is the
seed selection. Through path profiling and flagging, the user estab-
lishes an interaction with the seed selection algorithm in fuzzing.
We can push fuzzing to prioritize seeds with the flag, which has a
huge impact on the fuzzing direction.

Fairness Analysis: We only need to check introspection once to
help us find the paths to be flagged, because the distribution of path
frequency is basically stable under the same corpus. For example
in XMLO009, the frequency of paths that fail the "encoding" check
is always the highest. Therefore, for each experiment, our flags
are determined and reusable. These flags are like the target line
numbers in DGFs such as AFLGo, here we target these flagged paths.
Moreover, our flags are set before fuzzing starts, just as AFLGo
instrument the distance into basic blocks. So our experiments and
comparison are fair.
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5.3 Flagging Strategies

In this section, we will illustrate the role that humans play in DDGF
with three case studies which represent three different flagging
strategies. Through these cases, we explain how users can use
DDGF to analyze fuzzing bottlenecks and accelerate vulnerability
discovery.

Strategy 1: Exclude the Blocking Paths. The first kind of
flagging strategy is to exclude high-frequency blocking paths. If
there are large number of seeds enter paths which are rejected by
the function, we can directly exclude these high-frequency paths
and flag the remaining paths within the vulnerable function. This
is our default flagging strategy and works well in most cases.

Listing 3: Code Snippet for Flagging Stragety 1

1 sf flac_meta_callback () {

2 switch (metadata->type){
3

4

case FLAC_METADATA TYPE STREAM_INFO:

5 // MAGMA_LOG(SND007)

6 // MAGMA_LOG(SND024)

7 break;

8 case FLAC_METADATA_TYPE_UNDEFINED:
9 break;

10 }

We use SND007 and SND024 as examples, the related code is
shown in the Listing 3. sf flac_meta_callback is a callback function
that is called when decoding metadata types. The switch statement
in this function checks the metadata block type metadata->type of
the FLAC audio, and only seeds with the type of STREAM_INFO is
likely to trigger both vulnerabilities. We can decode and see in Fig-
ure 6(f) that the highest frequency path is the type of UNDEFINED,
highlighted in red. This means that a large number of seeds in the
queue are UNDEFINED type, which is rejected by this function. If
we can avoid mutating these seeds with UNDEFINED type as much
as possible, the probability of triggering the vulnerability will be
much higher. So we excluded this blocking path, and add flags for
all the remaining paths within the function. We reproduced both
vulnerabilities in less than 20 seconds. It proves that our flagging
strategy and seed selection method work well.

Strategy 2: Identify the Key Control-Flow. The second kind
of flagging strategy is to identify the key control-flow. In DDGF,
the path frequency distribution of the vulnerability function is an
important indicator. It helps us quickly identify the blocking paths.
We can simply exclude them to accelerate vulnerability detection,
filtering out better seeds that are more conducive to triggering the
vulnerability. However, for some cases, the vulnerability function
has not been reached for a long time, which makes the first flagging
strategy ineffective. We take TIF008 as an example to illustrate it.
The code Listing 4 is the functions related to this vulnerability.

AFL++ took an average of 20 hours to discover this vulnerability,
with 6 instances exceeding 24 hours. So, what exactly hinders the
triggering? Through introspection, We found that in the first 15
hours of testing, the vulnerability function NeXTDecode was not
tested at all. The path hit count is 0 , meaning that none of the more
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Listing 4: Code Snippet for Flagging Stragety 2
A

static int NeXTDecode(TIFF tif,

1

2 switch (n) {

3 case 1: .. break
4 case 2: .. break
5

6 default: // MAGMA_LOG(TIF008)
7
5}

0 int TIFFInitNeXT(TIFF tif , int scheme) {
11
12
13
14

(void) scheme;

tif —>tif predecode = NeXTPreDecode;
tif —->tif_decoderow = NeXTDecode;

tif —> tif_decodestrip = NeXTDecode;
tif -> tif_decodetile = NeXTDecode;
16 return (1) ;

17}

than 6,000 seeds could reach this function. It also means that the
strategy of only flagging the vulnerable function is not feasible in
such cases. Furthermore, the fuzzing was already in the coverage
plateau, and the discovery of new seeds is becoming increasingly
difficult. If it is so difficult to reach the vulnerable function, how
can the fuzzing satisfy the stricter data-flow conditions to trigger
it? Naturally, We want to know why function NeXTDecode was not
called.

We found the potential call site of the function NeXTDecode. In
the function TIFFInitNeXT, the NeXTDecode function pointer is as-
signed to tif decode for initialization. What surprised us is that this
function was only hit 6 times. This means that , after 15 hours, out
of the 6,000 seeds, at most only 6 seeds did the initialization of the
vulnerable function pointer. If the initialization function was not
even reached, the function NeXTDecode could not be called at all.
The initialization function is a necessary condition for triggering
the vulnerability. We gained the key insight and discovered the rea-
son for the low efficiency of fuzzing. After reaching the coverage
plateau, the probability of these seeds being randomly selected is
only about 6/6000, which greatly hinders the triggering of the vul-
nerability in NeXTDecode. Therefore, we believe that once fuzzing
explores this initialization function, the seeds should be given the
highest priority.

We added a flag for the key initialization path in function TIFFInit-
NeXT and then restarted fuzzing. To ensure fairness, we have to still
use the original corpus, rather than the 6,000 seeds. In 10 rounds
of fuzzing, we discovered this vulnerability in an average of only
1.67 hours. With DDGF, we provided key insights to fuzzing in the
form of path flagging. Just a key flag reduced the triggering time
by more than 10 times. The combination of human and fuzzing has
greatly enhanced the capabilities of full-automated fuzzing.

Strategy 3: Identify the Key Data-Flow. The third kind of
flagging strategy is to identify the key data-flow. For some vul-
nerabilities, their triggering conditions may be very strict, such
as the initial allocation of some variables, the assignment of cer-
tain function pointers, etc. In such cases, the above two flagging
strategies will both fail because the vulnerability function (or its
parent function) may be reached a large number of times during the
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fuzzing process, but due to these constraints, the vulnerability is
difficult to trigger. We take SQL020 as an example. The code Listing
5 is a list of functions related to this vulnerability.

Listing 5: Code Snippet for Flagging Stragety 3

1 static ExprList =exprListAppendList (..) {
2 // MAGMA_LOG(SQL020);

3}
4

5 int sqlite3WindowRewrite(Select «p, ..) {
6 // pWin use, data-flow constraint

7 if (p —>pWin && ..) |

8 pSort = exprListAppendList (...) ;

9 }

10 }

12 Window= sqlite3WindowAlloc(Parse «pParse, ..) {
13 // pWin def

14 pWin = (Window=)sqlite3DbMallocZero(pParse->db, sizeof(
Window));

15}

16

17 YYACTIONTYPE yy_reduce( ..) {

18 switch(yyruleno) {

19 case 315:

20 case 316:

21 case 317: sqlite3WindowAlloc(pParse, ...)

22

23 }

24}

AFL++ took an average of 10 hours to discover this vulnerability.
However, when adopting the flagging strategy which excludes high-
frequency paths in the vulnerable function or its caller function,
the fuzzer also took almost the same amount of time as AFL++.
It indicates that in this case, the root cause preventing the fuzzer
from triggering the vulnerability is not the high-frequency blocking
paths.

The vulnerability point is in the exprListAppendList function, and
sqlite3WindowRewrite is the only parent function that calls it. By
analyzing the path frequency distribution diagram provided by our
introspection subsystem during the testing, we found that many test
cases that have not triggered the vulnerability for a long time have
certain characteristics in common: 1. no paths were executed in
exprListAppendList and 2. its parent function sqlite3WindowRewrite
was executed more than 50,000 times, but no paths entered the if
statement. This implies that the vast majority of seeds cannot meet
the conditions of the if statement. By analyzing the path profiling
statistics results, we discovered that they were rejected because they
did not meet the fisrt condition p -> pWin, meaning pWin was not
properly initialized. We found the place where pWin is initialized
and allocated in the sqlite3WindowAlloc function, and identified
the location where this function is called in a switch statement in
yy_reduce function. Therefore, we believe that these are the critical
paths to trigger the vulnerability.

Then we added flags to three paths in yy_reduce function (cor-
responding to three case statements shown above) and restarted
fuzzing test with the original corpus provided by Magma. In 10
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rounds of fuzzing, the average time to reproduce the vulnerabil-
ity was reduced to 2 hours, which is 5 times faster compared to
AFL++ and the default flagging strategy. Obviously, when the de-
fault flagging strategy doesn’t work, the human-specific ability to
understand and analyze program semantics is crucial for fuzzer.

Summary: Based on the insights from dynamic introspec-
tion, we are able to direct fuzzing to reproduce vulnerabilities
faster with different flagging strategies. We achieved amaz-
ing improvements on some projects. This demonstrates the
effectiveness of DDGF.

5.4 Unknown Vulnerability Detection

We tested the real programs to evaluate the effectiveness of DDGF
in discovering unknown vulnerabilities. As shown in the Table 2,
we found 4 new vulnerabilities, 2 of which were assigned CVE
IDs. These programs are heavily tested in OSS-Fuzz, but the low-
frequency regions remains to be low-frequency during daily fuzzing.

Table 2: Unknown Vulnerability Detection Results

Program Version Type CVE Status
pdftoppm v21.10 heap.overQOw req. & assigned
assertion failure req.
tion fail .
ImageMagick  f71ca65 assertiof fatture red

heap overflow  req. & assigned

With dynamic introspection, we observed which parts of the
program were not fully tested and should be directed. Our primary
strategy is to flag the low-frequency part, excluding the blocking
paths, and use a combination of strategy 2 and 3 as we mentioned
above to identify the key control-flow and data-flow. It makes the
flagged parts to be tested more intensively. We expect to conduct
larger-scale experiments in the future to discover more vulnerabili-
ties.

5.5 Performance Overhead

Table 3: Comparison of Runtime Overhead between DDGF
and AFL++.

Program AFL++ DDGF Overhead
sndfile_fuzzer 6.52M  6.11M 6%
tiff_read_rgb_fuzzer 10IM  89.9M 11%
sqlite3_fuzzer 41.2M  375M 9%
xml_read_memory_fuzzer 223M  17.6M 21%
pdf_fuzzer 209k 173k 19%
libpng_read_fuzzer 312M  281M 10%

We evaluate the performance overhead of DDGF. If the perfor-
mance overhead is too high, it will seriously affect the speed of
fuzzing. We test each program in DDGF for 2 hours and compare the
number of executions of test cases with AFL++. The flags added by
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the user will affect the direction of fuzzing and lead to different mu-
tation strategies. So we compare with AFL++ in DDGF un-directed
mode. The results are shown in the Table 3.

We can see that the average performance overhead of DDGF is
only 13%, because we only do path profiling for the seeds. It proves
that our two-files fuzzing strategy works well.

5.6 Discussion

Compatible with Distance-Based DGF. The instrumentation
of path profiling are target-independent. It encodes the different
paths with integers. The flexibility of this encoding makes it also
compatible with distance-based DGFs such as AFLGo. Traditional
DGFs instrument constant distances into each basic block, and
we cannot change the target after compilation. However, we can
transform hard-code distance into variables by using path ID as an
index. We can compute the distance for different targets offline, and
feed them to the fuzzer as path-level distance with ID. This makes
our DDGF compatible with distance-based directing methods.

Directing methods can be designed in any stage of the fuzzing
loop. The core of our directing method is based on seed selection,
while the popular distance-based method is based on energy sched-
uling, which still wastes a lot of time on non-optimal seeds, and
relies on evolutionary algorithms to get close to the target slowly
and smoothly. Our approach prioritizes the seeds that go through
the flagged paths. It is able to approach the vulnerability target
rapidly and test intensively against it. In addition, DDGF provides
users with the chance to change the runtime strategy of fuzzing by
adding flags in real time. In the future, we will continue to explore
more types of interaction based on DDGF.

6 Related Works

6.1 Coverage Metrics

Coverage feedback[27, 34, 39, 46, 46] is the most critical part of grey-
box fuzzing. Test cases that explore new coverage are considered
good seeds and added to the queue for further mutation. Popu-
lar fuzzers such as AFL++[25] , Angora[22] use edge coverage by
default, while other tools such as LibFuzzer and Honggfuzz also pro-
vide function and basic block level coverage for users. Ankou[37]
points out that current edge coverage feedback can easily get stuck
in local optima because it cannot distinguish edge combination or-
der. They propose a distance-based fitness function to differentiate
execution coverage. AFLNet[40] and SGFuzz [13] propose that code
coverage can not consider state transitions for stateful programs
like network protocols. They provide state coverage feedback using
server return values and edges in the state transition graph. Heng
Yin et al. [43] formally define the sensitivity of coverage feedback
metrics and analyze the impact of different fitness functions sys-
tematically based on vulnerability detection results. However, as
they said, the choice of coverage feedback strategy is a trade-off,
and there is no absolute advantage or disadvantage for different
metrics.

The improvements in coverage metric selection and related
strategies are directly reflected in the seed queue. However, there
are still more intermediate states not exposed to users. We can only
judge whether new coverage is discovered or fuzzing gets stuck by
the console dashboard in AFL, which hinders us from evaluating
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the fuzzing progress. At the same time, the fuzzer also cannot sense
well which structure in the program hinders testing. This inspires
us to do the research to facility the communication between users
and fuzzers. Our work exposes the path-level status and shows the
great potential for human-in-the-loop for fuzzing.

6.2 Human-in-the-Loop for Fuzzing

In recent years, a large number of research have tried to improve
different stages of fuzzing. However, code coverage has always
been a key issue for testing. A critical problem is that fuzzers can
not understand the high-level semantics for different programs and
make dynamic adjustments according to the testing status. After the
CGC[3, 42] competition, the UCSB team[8] proposed to improve the
existing fully automated vulnerability detection paradigm and built
the prototype HaCRS[41]. When the machine gets stuck, humans
can participate by feeding new seeds, and providing key tokens to
help the fuzzer adjust in time.

IJON[12] presents the code annotation method for deep state
fuzzing. Users can customize the coverage feedback and guide
fuzzing to explore the state space of target regions by adding anno-
tations to the source code. It helps to complete challenges that were
previously difficult to solve, such as mazes, Mario games, and other
state-sensitive vulnerabilities. JMPscare[36] explicitly points out
that existing fuzzing lacks introspection. It proposes an offline anal-
ysis of the seed queue, displaying obstacles and current coverage
boundaries. It is implemented as a plugin for Binary Ninja. Security
auditors can directly flip the blocked conditional branches through
the UI to force the fuzzer to bypass obstacles. Learn2Fix[20] applies
interactive fuzzing for data-driven automated vulnerability fixing.
It asks users to mark whether errors occur during testing, which is
used in active learning to train test oracles. HM-Fuzz[19] presents
the concept of compartment analysis, combining the dominator
tree and dynamic analysis to divide the control flow graph into
different compartments. It helps users to locate areas that are more
likely to expand coverage.

7 Conclusion

In this paper, we propose a new directed fuzzing system called
DDGEF to facilitate the collaboration between humans and fuzzers.
We present the concept of dynamic directed fuzzing for the first
time, which allows users to dynamically direct fuzzer at runtime.
DDGEF consists of two subsystems, dynamic introspection system
and dynamic direction system, connected by the Ball-Larus path
profiling algorithm. On the one hand, path profiling reveals the huge
imbalance in path frequencies, which gives the user more insights
during the fuzzing process. On the other hand, we can select paths
to influence the seed selection stage in the fuzzing loop, which leads
fuzzer to focus on these paths and accelerate vulnerability discovery.
We implemented DDGF based on AFL++ and fuzz-introspector.
Experiments on Magma and real programs show that DDGF can
significantly improve the efficiency and effectiveness of fuzzing.
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