

DDGF: Dynamic Directed Greybox Fuzzing with Path Profiling

Haoran Fang, Kaikai Zhang, Donghui Yu, Yuanyuan Zhang*

Shanghai Jiao Tong University

International Symposium on Software Testing and Analysis (ISSTA 2024)

Coverage-Guided Fuzzing

- Evolutionary Algorithm
 - simple but effective
- AFL++/Syzkaller/Fuzzilli...
 - general & domain-specific
- Large-Scale Industrial Practice
 - $\circ \quad \text{OSS-Fuzz}\,, \text{OneFuzz}\,..$
 - 24/7 continuous fuzzing
 - over 36,000 bugs across 1,000 projects

Fuzzing is NOT a Black Box

- Start fuzzing, wait for the results
 - crash -> replay
- Coverage Plateau
 - Is current test sufficient?
 - Where is it stuck?
- More Intermediate Status Exposure
 - understand -> direct

last new path : 0 days, 0 hrs, 0 last new path : 0 days, 0 hrs, 0 last uniq crash : none seen yet last uniq hang : none seen yet	<pre>min, 43 sec min, 1 sec untq crashes: 0 untq hangs: 0</pre>
now processing : 261*1 (37.1%)	map density : 5.78% / 13.98%
paths timed out : 0 (0.00%)	count coverage : 3.30 bits/tuple
— stage progress —	
now trying : splice 14	favored paths : 114 (16.22%)
stage execs : 31/32 (96.88%)	new edges on : 167 (23.76%)
total execs : 2.55M	total crashes : 0 (0 unique)
- fuzzing strategy yields	path geometry
bit flips : n/a, n/a, n/a	levels : 11
byte flips : n/a, n/a, n/a	pending : 121
arithmetics : n/a, n/a, n/a	
known ints : n/a, n/a, n/a	own finds : 699
bayes (colice + EAS/1 AEM 103/1 44M	imported : n/a
Dy/custom : 0/0 0/0	stability : 99.88%
trim : 19.25%/53.2k. n/a	[cpu000: 125

AFL status screen

coverage plateau for libxml2

ISSTA 24

Motivation

- Directed Greybox Fuzzing
 - distance-based
 - recompile to change targets
 - \circ smooth and slow
 - distinguish different cases?
- Communication
 - bitmap in AFL
 - one-way mapping
 - AFLFast long tail map
 - cksum of tracebit
 - decode Index ?

Research Questions*

RQ1. How can the fuzzer explain what prevents it from progressing ?

RQ2. How can we facilitate a more effective communication between fuzzer and security auditor ?

* "Fuzzing: Challenges and Reflections," in *IEEE Software*, vol. 38, no. 3, pp. 79-86, May-June 2021

Design Overview

- Share the Same View of Code
 - how to describe a path?
 - Ball-Larus path encoding/profiling
- Interactive Way
 - decode & check paths
 - $\circ \quad \text{ add flags for target path } \\$
- Performance Overhead
 - trade-off
 - profiling for seeds

*Thomas Ball and James R. Larus. Efficient path profiling. (MICRO 1996).

⚠

Crash

Ball-Larus Path Profiling

Path	Encoding		
ACDF	0		
ACDEF	1		
ABCDF	2		
ABCDEF	3		
ABDF	4		
ABDEF	5		

• Encoding

- unique number(id)
- reverse topological order
- spanning tree & instrument

Decoding

- \circ path \Leftrightarrow id => hit_count
- user check & flag
- \circ connection

count[id]++
flag[id] = True/False?

Path Flagging

- check & decode the path frequency
 - insights from instropection
- add/change the flag for target paths
 - at any time of fuzzing
 - 3 flagging strategies
- flags
 - connection between user and fuzzer
 - influence on seed selection

Seed Selection

- Intuition
 - seeds with flag tend to produce testcases with flag
 - flags(feature) are saved in evolution
- Interactive Evolutionary Algorithm
 - old research topic
 - fitness function + <u>human evaluation</u>
- Back to Motivating Example
 - target path/cases

Implementation

Dashboard

Implementation

Path Frequency & Decoding in CFG

Implementation

Line Coverage, Combined with Fuzz-Introspector(llvm-cov)

Evaluation

- Magma benchmark & real programs
- Dynamic Introspection
 - insight?
 - typical long-tail shape
 - huge imbalance
 - \circ $$ 20% paths , 80% hits
 - decode top-2 paths
 - blocking path

Blocking paths are highlighted in red.

Fuzzing wasted too much resources on these paths.

ISSTA 24

Evaluation

String Checking

Rejected by first if statement

Evaluation

- Dynamic Direction
 - up to 100x~ speedup
 - only 1 flag: TIF008-10x
- Flagging Strategies
 - #1 Exclude the Blocking Path
 - #2 Identify the Key Control-Flow
 - #3 Identify the Key Data-Flow

Bug ID	AFL++	DDGF	Speedup	#Flags	Strategy
SND001	7.41m	4s	>100x	13	
SND005	15.22m	2s	>400x	4	
SND006	39.30m	16s	>140x	4	
SND007	20.01m	13s	>90x	16	1
SND017	13.48m	2.21m	6x	62	
SND020	30.25m	3.19m	10x	62	
SND024	14.39m	6s	>140x	10	
TIF012	4.39m	0.98m	4.5x	1	2
TIF014	4.29m	2.11m	$2\mathbf{x}$	11	
TIF014-cp	34.24m	6.89m	5x	11	1
XML003	12.71m	7.15m	1.7x	22	
XML009	11.8m	2.28m	5x	22	
PNG007	1.62h	0.49h	3.3x	2	
TIF002	13.39h	4.35h	3.0x	1	2
TIF008	19.88h	1.67h	11.9x	1	
SQL002	12.4m	10.6m	1.1x	3	
SQL014	2.07h	0.73h	2.8x	21	1
SQL018	1.31h	0.76h	1.7x	8	2
SQL020	10.0h	2.0h	5x	3	3
SSL020	17.6h	1.86h	9.5x	10	
PDF003	1.86h	11.5m	9.7x	6	2
PDF010	2.13h	2.29m	55x	36	1
PDF019	T.O	16.99h	>1.4x	110	1
PDF018	19.67h	42s	>1600x	1	
PDF021	T.O	T.O	-	6	2

Strategy 1: Exclude the Blocking Path

Listing 3: Code Snippet for Flagging Stragety 1

Exclude top blocking path(TYPE_UNDEFINED), and add flags for all remaining paths.

TTE acceleration: $20\min \Rightarrow 13s$

Strategy 2 : Identify the Key Control-Flow

```
Listing 4: Code Snippet for Flagging Stragety 2
```

```
static int NeXTDecode(TIFF* tif, ..) {
       switch (n) {
 3
           case 1: .. break
           case 2: .. break
 4
 5
             ...
           default: // MAGMA LOG(TIF008)
 6
 7
 8
 9
   int TIFFInitNeXT(TIFF* tif, int scheme) {
10
       (void) scheme;
11
       tif ->tif predecode = NeXTPreDecode;
12
       tif ->tif decoderow = NeXTDecode;
13
        tif -> tif_decodestrip = NeXTDecode;
14
        tif -> tif_decodetile = NeXTDecode:
15
       return (1);
16
17 }
```

6,000 Seeds, 0 Hits for the first 15h.

What hinders the triggering?

function pointer initialization

only 6 Hits, no more than 6/6000 seeds

Add only 1 flag for this key control-flow path . TTE acceleration: $19.88h \Rightarrow 1.67h$

Strategy 3 : Identify the Key Data-Flow

Performance Overhead

Table 3: Comparison of Runtime Overhead between DDGF and AFL++.

Program	AFL++	DDGF	Overhead
sndfile_fuzzer	6.52M	6.11M	6%
tiff_read_rgb_fuzzer	101M	89.9M	11%
sqlite3_fuzzer	41.2M	37.5M	9%
xml_read_memory_fuzzer	22.3M	17.6M	21%
pdf_fuzzer	209k	173k	19%
libpng_read_fuzzer	312M	281M	10%

Total # executions for 2 Hours

Thanks

