
DDGF: Dynamic Directed Greybox Fuzzing

with Path Profiling

Haoran Fang, Kaikai Zhang, Donghui Yu, Yuanyuan Zhang*

International Symposium on Software Testing and Analysis (ISSTA 2024)

Shanghai Jiao Tong University

Coverage-Guided Fuzzing

● Evolutionary Algorithm

○ simple but effective

● AFL++/Syzkaller/Fuzzilli…

○ general & domain-specific

● Large-Scale Industrial Practice

○ OSS-Fuzz , OneFuzz ..

■ 24/7 continuous fuzzing

■ over 36,000 bugs across 1,000 projects

Fuzzing is NOT a Black Box

● Start fuzzing, wait for the results

○ crash -> replay

● Coverage Plateau

○ Is current test sufficient？

○ Where is it stuck?

● More Intermediate Status Exposure

○ understand -> direct

coverage plateau for libxml2

AFL status screen

Motivation

● Directed Greybox Fuzzing

○ distance-based

○ recompile to change targets

○ smooth and slow

○ distinguish different cases?

● Communication

○ bitmap in AFL

■ one-way mapping

○ AFLFast long tail map

■ cksum of tracebit

■ decode Index ?

Research Questions*

RQ1. How can the fuzzer explain what prevents it from progressing ?

RQ2. How can we facilitate a more effective communication between
fuzzer and security auditor ?

* "Fuzzing: Challenges and Reflections," in IEEE Software, vol. 38, no. 3, pp. 79-86, May-June 2021

Design Overview

● Share the Same View of Code

○ how to describe a path?

○ Ball-Larus path encoding/profiling

● Interactive Way

○ decode & check paths

○ add flags for target path

● Performance Overhead

○ trade-off

○ profiling for seeds

Ball-Larus Path Profiling*

A

B

E

DCK1 K2 K3

0 K1 K1+K2

K1+K2+K3

*Thomas Ball and James R. Larus. Efficient path profiling. (MICRO 1996).

Ball-Larus Path Profiling

● Encoding

○ unique number(id)
○ reverse topological order
○ spanning tree & instrument

● Decoding
○ path ⇔ id => hit_count

○ user check & flag

○ connection

A

B

D

E F

C

count[id]++

id=4

id=2

id+=1

id=0

flag[id] = True/False?

Path Encoding

ACDF 0

ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

Path Flagging

● check & decode the path frequency

○ insights from instropection

● add/change the flag for target paths

○ at any time of fuzzing

○ 3 flagging strategies

● flags
○ connection between user and fuzzer

○ influence on seed selection

Seed Selection

● Intuition

○ seeds with flag tend to produce testcases with flag

○ flags(feature) are saved in evolution

● Interactive Evolutionary Algorithm

○ old research topic

○ fitness function + human evaluation

● Back to Motivating Example

○ target path/cases

Implementation

Dashboard

Implementation

Path Frequency & Decoding in CFG

Implementation

Line Coverage , Combined with Fuzz-Introspector(llvm-cov)

Evaluation

● Magma benchmark & real programs

● Dynamic Introspection

● insight ?

● typical long-tail shape

● huge imbalance

○ 20% paths , 80% hits

● decode top-2 paths

○ blocking path Blocking paths are highlighted in red.

Fuzzing wasted too much resources on these paths.

Evaluation

Rejected by first if statementString Checking

Evaluation

● Dynamic Direction

○ up to 100x~ speedup

○ only 1 flag: TIF008-10x

● Flagging Strategies

○ #1 Exclude the Blocking Path

○ #2 Identify the Key Control-Flow

○ #3 Identify the Key Data-Flow

Strategy 1 : Exclude the Blocking Path

Exclude top blocking path(TYPE_UNDEFINED), and add flags for all remaining paths.

TTE acceleration: 20min ⇒ 13s

Strategy 2 : Identify the Key Control-Flow

6,000 Seeds, 0 Hits for the first 15h.

What hinders the triggering?

function pointer initialization

only 6 Hits , no more than 6/6000 seeds

Add only 1 flag for this key control-flow path .

TTE acceleration: 19.88h ⇒ 1.67h

Strategy 3 : Identify the Key Data-Flow

def

use

○ data-flow constraint

○ focus on the key def-use chain

○ TTE : 10h ⇒ 2h

Performance Overhead

Total # executions for 2 Hours

Thanks

